CAN XL – THE NEXT STEP IN CAN EVOLUTION

JULY 2023

Agenda

- 1. Key Success Factors
- 2. Standardization
- 3. CAN XL Data Link Layer
- 4. New Functions on Layer 2
- 5. CAN XL Layer 1 Transceiver
- 6. <u>Compatibility</u> ON Layer 1 & 2
- 7. Use Cases

KEY SUCCESS FACTORS

CAN XL – Next Step in CAN Evolution Key Success Factors

Bit rate up to 20 Mbit/s

just limited by selected PHY technology

CAN XL protocol targeted for high-speed CAN XL transceivers (up to 20Mbit/s), but also works with CAN FD or CAN SIC transceivers

Incremental upgrade

& mixed networks (CAN FD & CAN XL)

Co-existence of "cheap" CAN FD and fast CAN XL nodes in same network

Supports complex network topologies

Flexible trade-off between speed and complex networks (e.g. long stubs supported)

Price

expected to be cheaper than 10BASE-T1S

Large payload size + New Functions (SDT, VCID, ...)

allows tunneling of e.g. Ethernet traffic (transparent for higher layer protocols)

All kind of payload types supported – including largest possible Ethernet frame, IPv6, ...

Extreme scalability

- wide range of bit rates configurable [up to 20 Mbit/s]
- ▶ any transceiver (Classic, FD, SIC, SIC XL) usable
- Use Cases: (1) Signal based communication
 (2) Service oriented communication (via ETH tunnelling)

AUTOSAR support

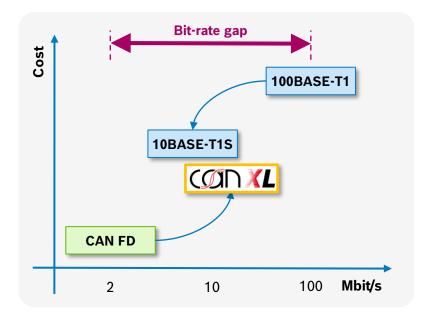
- CAN XL: new features
- ► Ethernet Tunneling via CAN XL
- released in November 2022

Availability

- CiA610-1 specification released in November 2021 as DSP (ISO Standardization ongoing: adopt CiA610-1 content)
- Samples of automotive micro controllers with CAN XL and CAN SIC XL Transceiver are available in 2023

Automotive Electronics | AE/PAI-IP | 2023-07-17

STANDARDIZATION


CAN XL – Next Step in CAN Evolution Why do we need CAN XL?

Background

Large Bit rate gap between CAN FD and 100BASE-T1 Ethernet

Target

- Provide a superior 10 Mbit/s CAN solution with respect to
 - ► Price (Transceiver, Pins, Cabling, ...)
 - ► Safety
 - Security
 - Quality of Service
 - -> initial target exceeded with max bit rate of up to 20 Mbit/s
- Preserve CAN properties: Arbitration, robustness, long stubs, ...

CAN XL – Next Step in CAN Evolution Standardization Status

Specification at CiA (CAN in Automation)

- ► CiA610-1 (OSI Layer 2, CAN XL Protocol)
- ► CiA610-3 (OSI Layer 1, CAN XL Transceiver)

ISO standardization

- ► ISO 11898-1 (OSI Layer 2, CAN XL Protocol)
- ► ISO 11898-2 (OSI Layer 1, CAN XL Transceiver)

- → released
- → released

→ integration of CiA610-1 started

Technically Stable

→ integration of CiA610-3 started

DATA LINK LAYER

CAN XL – Next Step in CAN Evolution Core Properties

Bitrate

- ► Arbitration Phase: ≤ 1 Mbit/s
- Data Phase: 1 ... up to 20 Mbit/s, user configured, tradeoff between bit rate & network topology

Identifier

- ▶ Priority ID (bus access priority): short (11 bit) → enables high net bit rate for short payloads
- ► Message ID (identifies message): long (32 bit) → sent in "Acceptance Field" during XL data phase

Data Field length

- Range: 1 ... 2048 byte (byte granularity)
- Enables: legacy CAN applications ... transparent Ethernet frame tunneling, use of TCP/IP, and more

Arbitration	Data	Trailer
slow: ≤ 1Mbit/s	fast: 1 up to 20 Mbit/s*	slow:
short: 11 bit ID	long: 1 up to 2048 byte	≤ 1Mbit/s

**depending on used Transceiver and topology

Q Automotive Electronics | AE/PAI-IP | 2023-07-17

CAN XL – Next Step in CAN Evolution New Functions **New Functions on Layer 2**

Layer 2 MAC Frame contains 3 new fields

SDT: SDU Type (8 bit)

- indicates the type of the protocol embedded in the data field
- comparable to EtherType in Ethernet
- CiA611-1 defines 2 SDT values for Ethernet Tunneling

VCID: Virtual CAN Network ID (8 bit)

- allows to separate the CAN network/bus into virtual networks
- comparable to VLAN ID in Ethernet ►

AF: Acceptance Field (32 bit)

- AF Field interpretation depends on SDT and supports both:
- 1) Content based addressing (Message ID) 2) Node based addressing (Src/Dst Address)

Layer 2 MAC frame format

•	Enables to run several applications or
	higher layer protocols on the same CAN bus

Essential feature for Zone Architectures ٠

Improves Safety & Security

Arbitration F	Arbitration Field Control Field								Data Field	CRC Fi	eld	ACK	Field	EOF Field	
Priority ID	XL	ADS	SDT	SEC	DLC	SBC	PCRC	VCID	AF	Data Bytes	FCRC	FCP	DAS	ACK	EOF

Automotive Electronics | AE/PAI-IP | 2023-07-1

CAN XL – Next Step in CAN Evolution SDU Type (SDT)

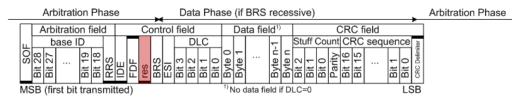
Definition

► Indicates the type of the protocol embedded in the data field – comparable to EtherType

CiA611-1

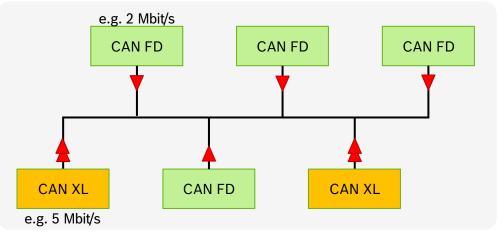
- ► specifies 5 SDU Types (SDT) in first version (specification of further values is planed)
- 8 bit 32 bit 8 bit 1 ... 2048 byte SDT VCID AF Data Field ... • • • • • • Content Based Addressing 0x01 Message ID CAN Data Source Dest. Node Addressing 0x02 CAN Data Address Address CAN Frame ID Classical & FD Frame Tunneling 0x03 Classical or CAN FD Frame (11 bit or 29 bit ID) ► IEEE 802.3 (Eth) Tunneling 0x04 user defined Ethernet frame, without FCS 8 bit of Truncated Destination ▶ IEEE 802.3 (Eth) mapped Tunneling 0x05 Ethernet frame, without FCS VLAN ID MAC Address

1 Automotive Electronics | AE/PAI-IP | 2023-07-17



CAN XL – Next Step in CAN Evolution Compatibility to CAN FD

CAN FD has the res bit for future protocol extensions

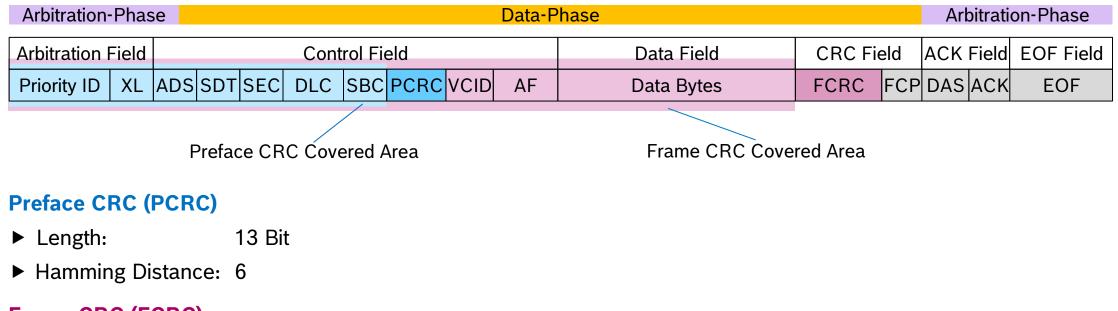

- ► res = 0: CAN FD node expects a CAN FD Frame
- res = 1: CAN FD node enters bus integration state a passive wait state
 CAN FD node finishes bus integration when the CAN XL frame ends (when 11 recessive bits seen)

Compatibility of CAN FD and XL enables

- Incremental upgrade path
- ► E/E Architecture design freedom: "mixed FD/XL" or "XL only" networks
- Mixed CAN FD/XL networks: 2 data bit rates on the same bus (CAN XL is limited to SIC mode, no Transceiver mode switch allowed)
 - right bandwidth for each bus node
 - bandwidth/price optimized endpoints

Mixed CAN FD / CAN XL network

1) Automotive Electronics | AE/PAI-IP | 2023-07-17



CAN XL – Next Step in CAN Evolution MAC Frame Format – Details¹

Arbitration Field Control Field							Data Field	CRC F	CRC Field		Field	EOF Field			
Priority ID	XL /	ADS S	SDT	SEC	DLC	SBC	PCR		AF	Data Bytes	FCRC	FCP	DAS	ACK	EOF
FD Mode	•					·			X	(L Mode		Å			FD Mode
Dyn. Stuff Bits Fixed Stuff Bits, 1 stuff bit after 10 data bits										Nc	o Stuff	fBits			
Priority ID	11-bit	ID for	bus a	rbitrati	ion, purp	oose: b	us acce	ss priori	ty						
XL	Placel	holder	in this	s grapł	nic for se	everal E	Bits: e.g	. Frame	Format	Switch 🗲 FD to XL Format					
ADS	Arbitra	Arbitration Data Sequence 🗲 Bit Rate Switching from Arbitration to Data Phase													
SDT	SDU Type (8 bit) \rightarrow indicates the type of the protocol embedded in the data field (comparable to EtherType in Ethernet)														
SEC		. ,	0		5	/er 2 fu	nctions	added h	eaders t	to the data field (e.g. Security, Fragi	mentation)				
DLC	Data Length Code (11 bit)														
SBC	Stuff Bit Count $ ightarrow$ count of dynamic stuff bits in the arbitration field, safeguards against specific error types														
PCRC		Preface CRC (13 bit) → Safeguards the bits up to PCRC													
VCID										Bus into virtual buses (comparable to		Ethern	et)		
AF						ld for tr	ie Addr	essing, t	he interp	pretation of this field depends on SD)				
Data		048 byt					11.	•							
FCRC		Frame CRC (32 bit) \rightarrow Safeguards the whole frame, i.e. the bits up to the FCRC Format Check Pattern \rightarrow Receiver checks if he is aligned to transmitted bit stream													
FCP								-							
 ► DAS Data Arbitration Sequence → Bit Rate Switching from Data to Arbitration Phase ► ACK Positive Acknowledgement, same as in CAN FD 															
				ageme	ent, sam	ie as in	CANE	D			¹ See CiA	610-1	for the	exact	frame forma
3 Automotive Electron © Robert Bosch Gm				garding anv	disposal, expl	pitation, repro	duction. editir	z. distribution. a	s well as in the (event of applications for industrial property rights.					

© Robert Bosch GmbH 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

CAN XL – Next Step in CAN Evolution MAC Frame – CRC Concept

Frame CRC (FCRC)

- ► Length: 32 Bit
- Hamming Distance: 6 (outperforms FlexRay and Ethernet CRC Polynomials)

CAN XL – Next Step in CAN Evolution Operating Modes

CAN XL has two Operating Modes

- ► The mode is configurable by software during runtime
- ► All nodes in one Bus/Network must use the same mode

Mode	Error Signaling ENABLED	Error Signaling DISABLED
Description	Errors signaled with Error Flags (identical to CAN FD behavior)	Errors are not signaled - RX Node : Re-Integrates after an Error (waits for the end of the current transmission) - TX Node : Does not check for TX errors (always transmits the full frame)
Compatibility	CAN XL is compatible to CAN FD	incompatible to CAN FD
Frames on Bus	CAN XL + CAN FD + Classical CAN	CAN XL only

CAN XL is compatible to CAN FD, when Error Signaling = ENABLED

1.5 Automotive Electronics | AE/PAI-IP | 2023-07-17

CAN XL – Next Step in CAN Evolution Comparison of CAN Protocols

Property	Classical CAN	CAN FD	CAN XL
Data Field	[0 8 byte]	[0 64 byte]	[1 2048 byte]
Identifier	11 bit & 29 bit	11 bit & 29 bit	11 bit
Bus Access	CSMA/CR (Arbitration)	CSMA/CR (Arbitration)	CSMA/CR (Arbitration)
Acceptance Field	-	-	32 bit (Message ID)
VCAN ID	-	-	8 bit
SDU Type	-	-	8 bit
Bit Stuffing	dynamic	dynamic fixed in CRC	dynamic (in arbitration field) fixed (in data phase)
CRC	15 bit	17 or 21 bit	PCRC: 13 bit FCRC: 32 bit (outperforms Flexray & Ethernet)
Error Signaling	ON	ON	Software Configurable: ON/OFF
Transceiver Mode Switching	Not supported	Not supported	Software Configurable: ON/OFF
Bit rate ratio: data/arb	-	Up to approx. 16.	Up to 40 (e.g. 500 kbit/s & 20 Mbit/s)
Arbitration phase bit rate Data phase bit rate	[0 1 Mbit/s] –	[0 1 Mbit/s] [arb. phase bit rate 8 Mbit/s]	[0 1 Mbit/s] [2x arb. phase bit rate 20 Mbit/s]

16 Automotive Electronics | AE/PAI-IP | 2023-07-17

LAYER 1 - TRANSCEIVER

CAN XL – Next Step in CAN Evolution Transceiver Types usable with CAN XL

- Today → High Speed CAN Transceiver
 1 Mbit/s in Data-Phase (realistic with existing bus topologies)
 - → CAN FD Transceiver

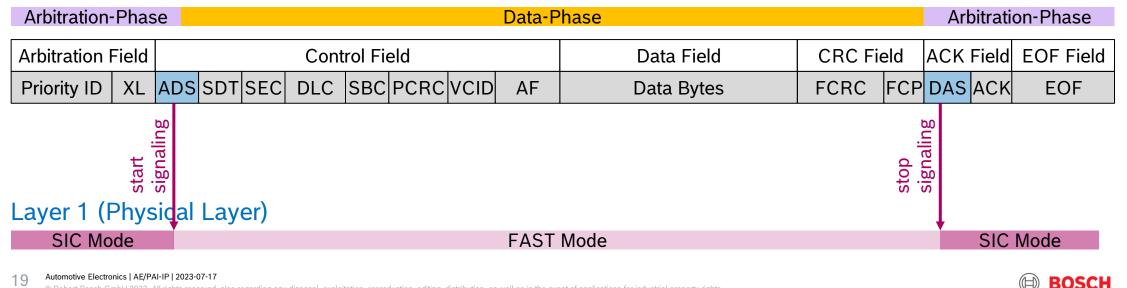
2 Mbit/s in Data-Phase (realistic with existing bus topologies)

→ CAN SIC Transceiver (Signal Improvement, former "Ringing Suppression") 5 or 8 Mbit/s in Data-Phase

► Tomorrow → CAN SIC XL Transceiver, according CiA610-3 up to 20 Mbit/s in Date-Phase

→ All transceivers: (1) usable & (2) pin compatible

Automotive Electronics | AE/PAI-IP | 2023-07-17


CAN XL – Next Step in CAN Evolution CAN SIC XL Transceiver – Overview

Modes of CAN SIC XL Transceiver

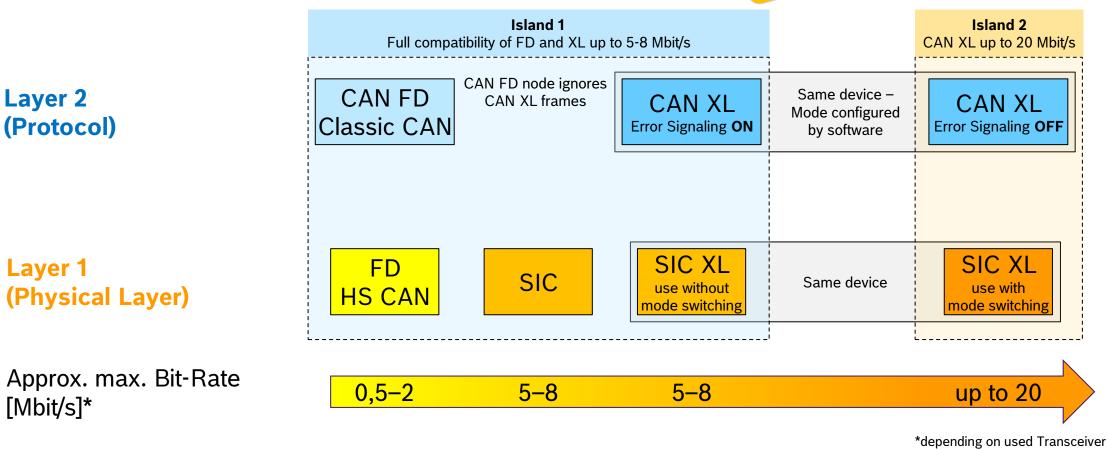
- ► SIC Mode → dominant/recessive (like a CAN SIC transceiver)
- ► FAST Mode → TX node: push/pull (0/1) RX node: adjust threshold (→ Error Frames not supported!)

The XL Protocol Controller signals the mode switch to the transceiver during ADS & DAS

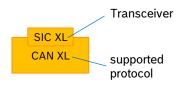
Layer 2 (MAC)

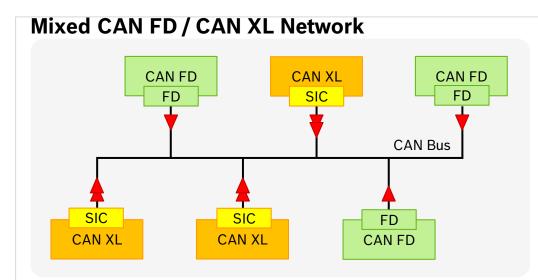
COMPATIBILITY

ON LAYER 1 & 2

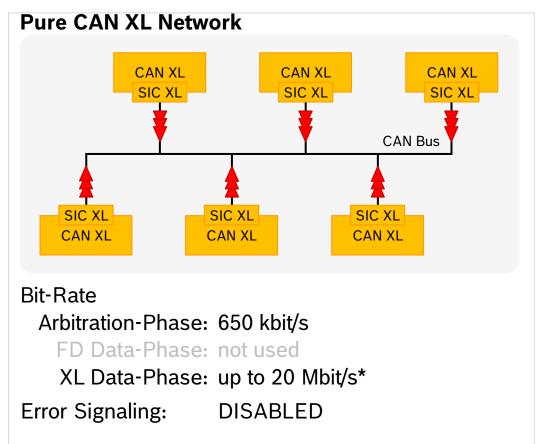

CAN XL – Next Step in CAN Evolution Compatibility

and topology


 (\mathbb{H})


BOSCH

21 Automotive Electronics | AE/PAI-IP | 2023-07-17


CAN XL – Next Step in CAN Evolution Examples

Bit-Rate

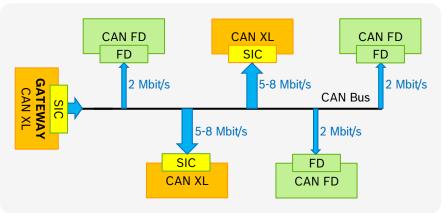
Arbitration-Phase: 500 kbit/s FD Data-Phase: 2 Mbit/s XL Data-Phase: 5 to 8 Mbit/s (NO mode switch)* Error Signaling: ENABLED

*depending on used Transceiver and topology

Automotive Electronics | AE/PAI-IP | 2023-07-17

USE CASES

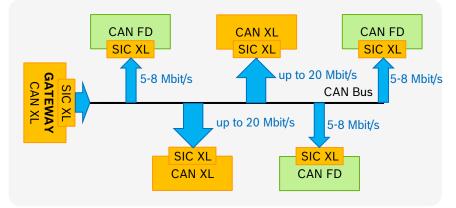
- - - - BOSCH

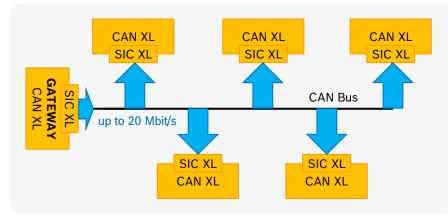

CAN XL – Next Step in CAN Evolution Example Use Cases

Flashing / Software updates

- Fact: Majority of new microcontrollers will support CAN XL
- Idea: Improve flashing times
 - ► Normal operation: pure CAN FD network
 - Flashing operation: CAN XL with

 (a) larger payload
 (b) bit rate only limited by transceiver type


Mixed Network (FD & XL ECUs): speed up by factor 2-4


Automotive Electronics | AE/PAI-IP | 2023-07-17

© Robert Bosch GmbH 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

Mixed Network (SIC XL only): speed up by factor 2-10

Pure XL ECU Network: speed up by factor 2-10

