

 03.07.2012

GTM-IP

Application Note AN013
DPLL PMT generation

Date: 03.07.2012
(Released)

Robert Bosch GmbH
Automotive Electronics (AE)

Automotive Electronics

GTM-IP Application note Revision 0.3

Robert Bosch GmbH ii 03.07.2012

LEGAL NOTICE

© Copyright 2012 by Robert Bosch GmbH and its licensors. All rights reserved.

“Bosch” is a registered trademark of Robert Bosch GmbH.

The content of this document is subject to continuous developments and
improvements. All particulars and its use contained in this document are given by
BOSCH in good faith.

NO WARRANTIES: TO THE MAXIMUM EXTENT PERMITTED BY LAW, NEITHER
THE INTELLECTUAL PROPERTY OWNERS, COPYRIGHT HOLDERS AND
CONTRIBUTORS, NOR ANY PERSON, EITHER EXPRESSLY OR IMPLICITLY,
WARRANTS ANY ASPECT OF THIS SPECIFICATION, SOFTWARE RELATED
THERETO, CODE AND/OR PROGRAM RELATED THERETO, INCLUDING ANY
OUTPUT OR RESULTS OF THIS SPECIFICATION, SOFTWARE RELATED
THERETO, CODE AND/OR PROGRAM RELATED THERETO UNLESS AGREED
TO IN WRITING. THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE
AND/OR PROGRAM RELATED THERETO IS BEING PROVIDED "AS IS",
WITHOUT ANY WARRANTY OF ANY TYPE OR NATURE, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND ANY
WARRANTY THAT THIS SPECIFICATION, SOFTWARE RELATED THERETO,
CODE AND/OR PROGRAM RELATED THERETO IS FREE FROM DEFECTS.

ASSUMPTION OF RISK: THE RISK OF ANY AND ALL LOSS, DAMAGE, OR
UNSATISFACTORY PERFORMANCE OF THIS SPECIFICATION (RESPECTIVELY
THE PRODUCTS MAKING USE OF IT IN PART OR AS A WHOLE), SOFTWARE
RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO RESTS
WITH YOU AS THE USER. TO THE MAXIMUM EXTENT PERMITTED BY LAW,
NEITHER THE INTELLECTUAL PROPERTY OWNERS, COPYRIGHT HOLDERS
AND CONTRIBUTORS, NOR ANY PERSON EITHER EXPRESSLY OR
IMPLICITLY, MAKES ANY REPRESENTATION OR WARRANTY REGARDING THE
APPROPRIATENESS OF THE USE, OUTPUT, OR RESULTS OF THE USE OF
THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR
PROGRAM RELATED THERETO IN TERMS OF ITS CORRECTNESS,
ACCURACY, RELIABILITY, BEING CURRENT OR OTHERWISE. NOR DO THEY
HAVE ANY OBLIGATION TO CORRECT ERRORS, MAKE CHANGES, SUPPORT
THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR
PROGRAM RELATED THERETO, DISTRIBUTE UPDATES, OR PROVIDE
NOTIFICATION OF ANY ERROR OR DEFECT, KNOWN OR UNKNOWN. IF YOU
RELY UPON THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE
AND/OR PROGRAM RELATED THERETO, YOU DO SO AT YOUR OWN RISK,
AND YOU ASSUME THE RESPONSIBILITY FOR THE RESULTS. SHOULD THIS
SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM
RELATED THERETO PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
LOSSES, INCLUDING, BUT NOT LIMITED TO, ANY NECESSARY SERVICING,
REPAIR OR CORRECTION OF ANY PROPERTY INVOLVED TO THE MAXIMUM
EXTEND PERMITTED BY LAW.

Automotive Electronics

GTM-IP Application note Revision 0.3

Robert Bosch GmbH iii 03.07.2012

DISCLAIMER: IN NO EVENT, UNLESS REQUIRED BY LAW OR AGREED TO IN
WRITING, SHALL THE INTELLECTUAL PROPERTY OWNERS, COPYRIGHT
HOLDERS OR ANY PERSON BE LIABLE FOR ANY LOSS, EXPENSE OR
DAMAGE, OF ANY TYPE OR NATURE ARISING OUT OF THE USE OF, OR
INABILITY TO USE THIS SPECIFICATION, SOFTWARE RELATED THERETO,
CODE AND/OR PROGRAM RELATED THERETO, INCLUDING, BUT NOT LIMITED
TO, CLAIMS, SUITS OR CAUSES OF ACTION INVOLVING ALLEGED
INFRINGEMENT OF COPYRIGHTS, PATENTS, TRADEMARKS, TRADE
SECRETS, OR UNFAIR COMPETITION.

INDEMNIFICATION: TO THE MAXIMUM EXTEND PERMITTED BY LAW YOU
AGREE TO INDEMNIFY AND HOLD HARMLESS THE INTELLECTUAL
PROPERTY OWNERS, COPYRIGHT HOLDERS AND CONTRIBUTORS, AND
EMPLOYEES, AND ANY PERSON FROM AND AGAINST ALL CLAIMS,
LIABILITIES, LOSSES, CAUSES OF ACTION, DAMAGES, JUDGMENTS, AND
EXPENSES, INCLUDING THE REASONABLE COST OF ATTORNEYS’ FEES AND
COURT COSTS, FOR INJURIES OR DAMAGES TO THE PERSON OR
PROPERTY OF THIRD PARTIES, INCLUDING, WITHOUT LIMITATIONS,
CONSEQUENTIAL, DIRECT AND INDIRECT DAMAGES AND ANY ECONOMIC
LOSSES, THAT ARISE OUT OF OR IN CONNECTION WITH YOUR USE,
MODIFICATION, OR DISTRIBUTION OF THIS SPECIFICATION, SOFTWARE
RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO, ITS
OUTPUT, OR ANY ACCOMPANYING DOCUMENTATION.

GOVERNING LAW: THE RELATIONSHIP BETWEEN YOU AND ROBERT BOSCH
GMBH SHALL BE GOVERNED SOLELY BY THE LAWS OF THE FEDERAL
REPUBLIC OF GERMANY. THE STIPULATIONS OF INTERNATIONAL
CONVENTIONS REGARDING THE INTERNATIONAL SALE OF GOODS SHALL
NOT BE APPLICABLE. THE EXCLUSIVE LEGAL VENUE SHALL BE
DUESSELDORF, GERMANY.

MANDATORY LAW SHALL BE UNAFFECTED BY THE FOREGOING
PARAGRAPHS.

INTELLECTUAL PROPERTY OWNERS/COPYRIGHT OWNERS/CONTRIBUTORS:
ROBERT BOSCH GMBH, ROBERT BOSCH PLATZ 1, 70839 GERLINGEN,
GERMANY AND ITS LICENSORS.

Automotive Electronics

GTM-IP Application note Revision 0.3

Robert Bosch GmbH iv 03.07.2012

Revision History

Issue Date Remark
0.1 19.10.2011 Initial version
0.2 06.12.2011 Update for GTM-IP Specification v1.5.0
0.3 03.07.2012 Update for GTM-IP Specification v1.5.4

Tracking of major changes

Changes between revision 1.x and 1.y
NA

Conventions

The following conventions are used within this document.
ARIAL BOLD CAPITALS Names of signals
Arial bold Names of files and directories
Courier bold Command line entries
Courier Extracts of files

References

This document refers to the following documents.
Ref Authors(s) Title
1 AE/EIN2 GTM-IP Specification v1.5.4
2 AE/EIN2 AN011 DPLL Micro tick generation

Terms and Abbreviations

This document uses the following terms and abbreviations.
Term Meaning
GTM Generic Timer Module

Automotive Electronics

GTM-IP Application note Revision 0.3

Robert Bosch GmbH v 03.07.2012

Table of Contents

1 Overview... 1
1.1 Use case .. 1
1.2 System architecture ... 2
1.3 Requirements... 3
2 Submodule setup... 4
2.1 Overview.. 4
2.2 DPLL Micro tick generation.. 4
2.3 ARU Communication plan ... 5
2.4 MCS Controlled action generation... 5
2.4.1 DPLL Configuration... 7
2.4.2 ATOM0 CH1 Configuration ... 7
2.4.3 MCS0 CH0 Implementation .. 7
2.5 DPLL Controlled action generation.. 8
2.5.1 DPLL Configuration... 10
2.5.2 ATOM0 CH2 Configuration ... 11
2.5.3 MCS0 CH1 Implementation .. 12
3 Implementation .. 14
3.1 Overview.. 14
3.1.1 AN013 main() .. 14
3.1.2 AN013 Interrupt Service Routines .. 15
3.2 Automatic check of application .. 17

Automotive Electronics

GTM-IP Application note Revision 0.3

1 Overview

This application note describes the DPLL PMT calculation feature. This feature offers
the functionality to request a calculation service from the DPLL on behalf of a
combination of the DPLL angle clock and the time domain. The system provides a
position of the angle clock and a time in clock ticks of the TBU_TS0 clock and the
DPLL calculates the position and time, this event will take place (Position-Minus-Time
(PMT)).

1.1 Use case
In engine management systems it is important to know the position of the engine and
the corresponding time to manage and control the engine. Since the valves have a
physical delay, this delay has to be taken into account, when an action on the engine
should be applied. For example if someone wants to initiate an injection of a pump at
a specific engine position, he has to schedule the injection a little bit before this
engine position to give the pump a little bit of time to open.
The DPLL is able to calculate the time and engine position out of the actual engine
behaviour and predict this times for the future. This PMT calculation is done
automatically for each new arriving tooth.

P

T

PT

TT dt

PE

Figure 1.1: PMT calculation principle.

Figure 1.1 should clarify the PMT functionality. On the y-axis one can see the position
of the engine while the x-axis represents the time and the swinging line represents
the behaviour of the engine. At some time long before target time TT, the user

Robert Bosch GmbH 1/17 03.07.2012

Automotive Electronics

GTM-IP Application note Revision 0.3

requests the calculation of this target time and the target position PT. This is done by
specifying the engine position PE and a delta time dt in clock ticks of the TBU time
stamp clock of channel 0.
Please note, that these requests for PMT calculation can only issued via the ARU
interface of the DPLL, thus only modules which can issue write requests to the ARU
are able to do these requests. These are the TIM, PSM and MCS submodules.

1.2 System architecture
For this application note, the PMT calculations should be issued by the MCS and the
PMT results should be shown by actions on the ATOM outputs. This section should
describe the system architecture and submodules typically involved in the PMT
calculation mechanism.

TIM0TIM0_CH0_IN

TBU

DPLLMAP TRIGGER

T
B

U
_

T
S

0

T
B

U
_

T
S

1

PMTR14

PMTR15

ARU ATOM0

CH0

MCS0

CH1

CH1

CH2

ATOM0_CH1_
OUT

ATOM0_CH2_
OUT

T
B

U
_

T
S

0

T
B

U
_T

S
1

1 2

12

3

4

Figure 1.2: Application of the PMT functionality on the GTM device.

Figure 1.2 shows main submodules involved in the PMT functionality. For the DPLL
to generate micro ticks a TIM input channel, the MAP submodule and the TBU is
needed. For the PMT functionality a MCS channel, the ARU and the DPLL are
needed. To visualize the result, an ATOM channel can be used which creates an
edge at the output, when the PMT time is reached.
This application note shows two possibilities how to create such a PMT event at the
ATOM outputs. Therefore, two MCS channels, two DPLL PMT channels, and two
ATOM channels are used.
The first possibility is shown by the doted communication lines via the ARU. The
MCS channel zero (0) first sends a PMT request to the DPLL channel 14 and
receives the calculated action time at each incoming tooth from this DPLL channel.
The MCS channel than can sends this action time stamps to the ATOM channel one
(1) for edge creation.
With the second possibility, the MCS channel is not involved in sending the
calculated action times to the ATOM channel. There, the MCS channel one (1) first

Robert Bosch GmbH 2/17 03.07.2012

Automotive Electronics

GTM-IP Application note Revision 0.3

Robert Bosch GmbH 3/17 03.07.2012

sets up the ATOM channel two (2) to receive subsequent match times from the DPLL
channel 15. After setting up the ATOM, the MCS channels issues a PMT request with
DPLL channel 15. The MCS channel than waits for the match event at ATOM
channel two to occur. Further communication takes place between DPLL channel 15
and ATOM channel two (2) directly via ARU, where the ATOM channel receives at
each incoming tooth new PMT action values.

For the PMT calculations and especially the output of these actions at the ATOM
channels, micro ticks generated by the DPLL are needed. For the basic principle of
micro tick generation please refer to the application note AN011.

1.3 Requirements
This application note only runs in combination with application note AN011, since
micro tick generation has to be established for the PMT application. The following
table shows the required environment:

Module Version
GTM-RM Starting from GTM-RM v1.4.4
GTM-IP Starting from GTM-IP v1.4.2
AN011 v0.2
AN013 v0.2

Automotive Electronics

GTM-IP Application note Revision 0.3

2 Submodule setup

2.1 Overview
For the PMT calculation with the DPLL a TRIGGER or STATE input signal is needed
on behalf of which micro ticks for the angle clock can be generated an the PMT
results can be calculated. For the micro tick generation, the same startup up code
and testbench environment as for application note AN011 “Micro tick generation with
DPLL” is used.
Therefore, the code consists of two parts. The first part is identical to AN011 and the
second part establishes the PMT application. Here first the DPLL micro tick part is
described in brief. Starting from second 2.3 the PMT application is described.

2.2 DPLL Micro tick generation
Figure 2.1 shows the testbench setup for the DPLL micro tick generation. The
TRIGGER input signal is generated as a PWM signal with ATOM0 Channel seven (7)
where the PWM characteristic is served in a FIFO ring buffer mode.

CMU

ATOM0

TRIGGER

T
B

U
_T

S
0

ATOM0_CH7

ARU

MAPTIM0
TIM0_CH7

PSM

CMU_CLK0

DPLL

TBU

sub_inc1c

Figure 2.1: Micro tick generation with DPLL.

Robert Bosch GmbH 4/17 03.07.2012

Automotive Electronics

GTM-IP Application note Revision 0.3

Robert Bosch GmbH 5/17 03.07.2012

The DPLL than receives the ATOM PWM signal via TIM0 Channel seven (7) and
input multiplexer for channel zero (0) on the TRIGGER input line.

2.3 ARU Communication plan
The GTM router is based on a addressing scheme, were the write addresses for the
submodule channels are fixed and the read addresses can be configured by software
to guarantee different routing possibilities for different application domains.
For this application note, different routes have to be setup between the DPLL, MCS0
and ATOM0 channels. These routes and their corresponding addresses are shown in
the following table:

Submodule Channel Write address Destination
DPLL CH14 0x18d MCS0 CH0
 CH15 0x18e ATOM0 CH2
MCS0 CH0 0x077 DPLL CH14
 CH0 0x078 ATOM0 CH1
 CH1 0x079 DPLL CH15
 CH1 0x07A ATOM0 CH2
ATOM0 CH1 0x120 MCS0 CH0
 CH2 0x121 MCS0 CH1

Table 2.1: ARU communication scheme.

2.4 MCS Controlled action generation
As mentioned above, there are two possibilities to program a PMT event for the
GTM. One is a closely coupled communication between the MCS and the DPLL and
no direct communication path between the DPLL and the corresponding ATOM
channel. The resources for this PMT application are listed in the following table:

Submodule Channel
DPLL CH14
MCS0 CH0
ATOM0 CH1

Table 2.2: GTM Resources for closely coupled MCS – DPLL communication.

The operation principle is shown in Figure 2.2. As it can be seen from the figure, the
communication pathes are drawn between the MCS and the DPLL and the MCS and
the ATOM. In this application variant, the MCS channel is in close interaction with the
DPLL, issues a PMT request first, sets up a match event at the ATOM and than waits
for the PMT results from the DPLL. When the PMT result is close enough, the MCS
issues a match request with the ATOM a last time and than waits for the match event
to happen.

Automotive Electronics

GTM-IP Application note Revision 0.3

Before this sequence starts, the MCS channel has to wait for the DPLL to be
synchronized. This synchronisation is determined by the CPU and signalled to the
MCS via a TRIGGER event.

Figure 2.2: PMT functionality with closely coupled MCS – DPLL path.

For this application to work, the MCS, DPLL and ATOM channel have to be
configured.

Robert Bosch GmbH 6/17 03.07.2012

Automotive Electronics

GTM-IP Application note Revision 0.3

2.4.1 DPLL Configuration
For the action calculation, the DPLL needs to know the source where the PMT
requests and values for calculation come from. This source has to be configured in
the DPLL_ID_PMTR_x register, where x is the channel for the calculation. In total,
the DPLL offers 24 such calculation channels. Since these ID registers are write
protected when the DPLL is enabled, the read addresses have to be configured
before the DPLL is initialized. For this application note and according to Table 2.1 the
DPLL PMT CH14 gets it requests from the MCS0 CH0 and their from the address
0x77 and the DPLL PMT CH15 gets its data from MCS0 CH1 write address 0x79.
The action calculation can be enabled with the action enable bits in the
DPLL_CTRL_2, 3, 4 registers. For this application note for channels 14 and 15, the
DPLL_CTRL_3 register has to be used. This is done after the DPLL has locked on
the TRIGGER input signal, inside of the GL1I ISR.

2.4.2 ATOM0 CH1 Configuration
The ATOM0 CH1 is intended to do a compare match for the calculated PMT position
and time. The channel receives this data via ARU from the MCS0 CH0. Therefore,
two registers have to be initialized for this application. First, the ARU read address
has to be configured. According to Table 2.1 this is the MCS0 CH0 write address
0x78. This has to be programmed into the register ATOM0_CH1_RDADDR. Than,
the channel is initialized in SOMC mode with ARU enabled.
The ATOM channel and its output are enabled together with the second ATOM
channel used for the PMT application demonstration. After the match event, the
ATOM0 CH1 raises an interrupt to the CPU which causes the MCS CH0 to cancel
any subsequent ARU transfers.

2.4.3 MCS0 CH0 Implementation
The MCS0 CH0 has a closely coupled connection to the DPLL and the ATOM CH1.
Code fragment 2.1 shows the MCS implementation for MCS0 CH0.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17

tsk_x0: lit24 400 ; operand 1: Time 0x190
tsk_x1: lit24 110592 ; operand 2: Position 0x1B000

;**
;* task 0: closely-coupled mcs task for action calculation
;* tsk_x0 Time value for action
;* tsk_x1 Position value for action
;**

tsk0_init:
 mrd R0 tsk_x0 ; load PMT values to register R0 and R1
 mrd R1 tsk_x1
 movl ACB $3 ; SF then toggle
 movl R2 $1 ; setup trigger bit to wait for
 wurm R2 CTRG $1 ; wait on trigger register match
 awr R0 R1 $0 ; issue PMT request on WR_ADDR 0x77 --> DPLL CH14

Robert Bosch GmbH 7/17 03.07.2012

Automotive Electronics

GTM-IP Application note Revision 0.3

tsk0_prq:

18
19
20
21
22
23

 ard R4 R5 $18D ; read DPLL CH14 result (0x18D)
 jbs STA CAT tsk0_done ; if ARU transfer canceled by CPU stopp ch.
 awr R4 R5 $1 ; write DPLL calculated result to ATOM
 jmp tsk0_prq ; one more time...
tsk0_done:
 andl STA ~EN_MSK ; disable task

Code 2.1: MCS0 CH0 implementation.

In lines 01 and 02 the PMT request values for the DPLL are stored. The action time
should be at position stamp 0x1B000 minus 0x190 ticks of the time stamp clock
TBU_TS0. Then, the task starts with first loading the PMT values into the MCS
registers R0, and R1 and the ARU control bits 0x3, which is the command for the
ATOM to do a toggle at the first match is detected on either time or position.
Starting from line 14 a trigger synchronization point is prepared. A trigger bit position
0 is chosen in register R2 (line 14), and a wait until register match WURM on the
MCS0 Trigger register CTRG is set up with masking of bit 0. By this construction, the
MCS0 CH0 is stopped until the CPU triggers the channel by setting the trigger bit 0.
With line 16 the PMT application is done. Line 16 first sends the PMT request at the
MCS0 write address offset 0. This is the write address 0x77 for MCS0. Destination is
the DPLL channel 14 (see also Table 2.1).
The MCS then receives the loops. First, the PMT request is done in line 16. The
MCS0 channel waits in line 17 for the calculated result. This result is received for
every tooth. When the ARU read request was not canceled by the CPU by writing to
the corresponding CAT bit 0 in the MCS0_RST register, the channel writes the
received compare values in register R4, R5 as is the ATOM channel (line 20), jumps
back to label tsk0_prq and waits for an actualized PMT result from the DPLL.
When the ARU read command is canceled by the CPU, the MCS0 CH0 jumps to
label tsk0_done and disables himself by clearing the channel enable bit in line 23.
Cancelation of the ARU read request is done by the CPU, when the ATOM0 CH1
matches on the configured compare values and has raised an interrupt.

2.5 DPLL Controlled action generation
The second possibility to establish a PMT calculation and action event at the ATOM
output is a loosely communication scheme between MCS and DPLL and a more
closely communication directly between DPLL and ATOM channel. The resources for
this PMT application are listed in the following table:

Submodule Channel
DPLL CH15
MCS0 CH1
ATOM0 CH2

Table 2.3: GTM Resources for loosely coupled MCS – DPLL communication.

Robert Bosch GmbH 8/17 03.07.2012

Automotive Electronics

GTM-IP Application note Revision 0.3

Robert Bosch GmbH 9/17 03.07.2012

The communication scheme is shown in Figure 2.3. The first two parts (1), (2) of the
MCS program are intended to reprogram the ATOM channels read address to listen
to the DPLL CH15 write address and to setup the PMT request at the DPLL CH15.
After that, the MCS CH1 issues a read request on the ATOM CH2 match event (3)
and blocks here until the match event occurs.
The DPLL calculates at each tooth new PMT compare values and sends these
values directly to the ATOM channel (1).
The ATOM channel changes his read address (1) to listen to the DPLL and at one
point in time matches on the compare values (2) and sends the result to the MCS.

Automotive Electronics

GTM-IP Application note Revision 0.3

MCS

2

DPLL

1

ATOM

1

2

1

PMT request

PMT result

Match request

Match result

1

Change ARU RDADDR

1

PMT result

Match request

PMT result

Match request

3

Figure 2.3: PMT functionality with loosely coupled MCS – DPLL path.

2.5.1 DPLL Configuration
In the loosely coupled PMT application there is no difference for the DPLL setup. The
read address has to be defined for CH15. This is the write address of the MCS0 CH2.

Robert Bosch GmbH 10/17 03.07.2012

Automotive Electronics

GTM-IP Application note Revision 0.3

The DPLL CH15 is enabled together with CH14 and calculates new PMT results,
when the channel receives the PMT request from the MCS.

2.5.2 ATOM0 CH2 Configuration
For the ATOM0 CH2, there is a difference in configuring the ARU read addresses.
Each ATOM channel has the possibility to read from two different addresses. The
ATOM channels ARU read address register is shown in Register 2.5.2.1.

2.5.2.1 Register ATOM[i]_CH[x]_RDADDR (x: 0...7)

Address
Offset:

see Appendix B Initial Value: 0x01FE_01FE

 31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9 8 7 6 5 4 3 2 1 0

Bit

R
es

er
ve

d

R
D

A
D

D
R

1

R
es

er
ve

d

R
D

A
D

D
R

0

Mode R

R
P

w

R

R
P

w

Initial
Value 0x

00

0x
1F

E

0x
00

0x
1F

E

Bit 8:0 RDADDR0: ARU Read address 0. ATOM_1197

Note: This read address is used by the ATOM channel to receive data
from ARU immediately after the channel and ARU access is enabled
(see ATOM[i]_CH[x]_CTRL register for details).

ATOM_1198

 Note: This bitfield is only writeable if channel is disabled. ATOM_1771

Bit 15:9 Reserved: Read as zero, should be written as zero. ATOM_1199

Note: Read as zero, should be written as zero. ATOM_1498

Bit 24:16 RDADDR1: ARU Read address 1. ATOM_1201

Note: The ATOM channel switches to this read address, when
requested in the ARU control bits 52 to 48 with the pattern "111--". The
channel switches back to the RDADDR0 after one ARU data package
was received on RDADDR1.

ATOM_1202

Note: This read address is only applicable in SOMC mode.
Note: This bitfield is only writeable if channel is disabled. ATOM_1770

Bit 31:25 Reserved: Read as zero, should be written as zero. ATOM_1205

Note: Read as zero, should be written as zero. ATOM_1499

The main read address is defined by bitfield RDADDR0. This read address is used by
the channel when it is enabled. The read address can be changed by a source at the
ARU by sending the value ‘111’ in the ACB control bits 4 downto 2. This will cause
the ATOM channel to listen to RDADDR1 further on, until a compare match event
occurs. Then, the channel switches back to RDADDR0.
Please note, that this feature is only available in ATOM SOMC mode.

Robert Bosch GmbH 11/17 03.07.2012

Automotive Electronics

GTM-IP Application note Revision 0.3

As it can be seen from Table 2.1, the ATOM0 CH2 occurs in the destination column
two times. One source is the DPLL CH15 and the second one is the MCS0 CH1.
Therefore, there are two addresses to configure, where the main read address
should be the MCS channel. The corresponding code can be seen in the following
code fragment.

01
02
03
04
05

ATOM0_CH2_RDADDR = 0x018E007A; // get data from DPLL CH15 and MCS0 CH1
ATOM0_CH2_CTRL = 0x9; // ATOM0 CH2 in SOMC, ARU enabled

ATOM0_AGC_OUTEN_STAT = 0x0028; // enable CH1 and CH2 output
ATOM0_AGC_ENDIS_STAT = 0x0028; // enable CH1 and CH2

Code 2.2: ATOM0 CH2 configuration.

2.5.3 MCS0 CH1 Implementation
The MCS0 CH1 implementation differs also from the closely coupled solution. The
code can be seen in Code fragment 2.3.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22

tsk_x0: lit24 400 ; operand 1: Time 0x190
tsk_x1: lit24 110592 ; operand 2: Position 0x1B000

;**
;* task 1: loosely-coupled mcs task for action calculation
;* tsk_x0 Time value for action
;* tsk_x1 Position value for action
;**

tsk1_init:
 mrd R0 tsk_x0 ; load PMT values to register R0 and R1
 mrd R1 tsk_x1
 movl ACB $1F ; ATOM - ACB: change read address to DPLL
 awr R0 R1 $3 ; write request to ATOM channel
 movl R2 $1 ; setup trigger bit to wait for
 wurm R2 CTRG $1 ; wait on trigger register match
 movl ACB $3 ; ATOM - ACB: SF then toggle
 awr R0 R1 $2 ; issue PMT req. on WR_ADDR 0x79 --> DPLL CH15
 ard R4 R5 $121 ; read ATOM CH2 result after match (0x121)
 orl STA IRQ_MSK ; raise IRQ, when result received from ATOM
tsk1_done:
 andl STA ~EN_MSK ; disable task

Code 2.3: MCS0 CH1 code for loosely coupled MCS – DPLL communication.

The MCS0 CH1 task also initializes the registers R0 and R1 with the PMT request
values in line 11 and 12 but then configures the ACB register with all ‘1’. This ACB
command is send in line 14 to the ATOM0 CH2 and causes this channel to listen
further on to the DPLL PMT results.

Robert Bosch GmbH 12/17 03.07.2012

Automotive Electronics

GTM-IP Application note Revision 0.3

Robert Bosch GmbH 13/17 03.07.2012

With line 15 and 16 the wait until register match sequence is programmed to wait for
the CPU trigger to continue with the work.
Lines 17 and 18 are used for the PMT request to the DPLL. Please note, that the
ACB bit field has to be changed to the action which should be executed by the ATOM
channel on a compare match event. This action command is send together with the
PMT request data in registers R0 and R1 with the command in line 18. The DPLL will
send this programmed ACB bits together with the PMT result, and because the
ATOM channel is supposed to listen to the DPLL further on will get the compare
match values together with these ACB bits.
The ARU read command in line 19 then causes the MCS0 CH1 to sleep until the
match event at the ATOM occurs and the match times are provided by the ATOM
channel. The MCS0 CH1 then raises an interrupt in line 20 and disables himself.
The interrupt is used by the application note to check the action results. This check is
described in section 3.2.

Automotive Electronics

GTM-IP Application note Revision 0.3

3 Implementation

3.1 Overview

3.1.1 AN013 main()
The main application code is shown in code fragment 4.1.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

…

cout << "Configure DPLL" << endl;
cout << "===" << endl;
// setup DPLL PMTR read addresses before DPLL enable
cout << "Setup DPLL PMTR 14, 15 first" << endl;
DPLL_ID_PMTR_14 = 0x077; // receive PMT value from MCS0 CH0
DPLL_ID_PMTR_15 = 0x079; // receive PMT value from MCS0 CH1
init_dpll();

// start the MCS ch0, ch1 programs
cout << "Initialize MCS0 RAM..." << sizeof(mcs0_mem) << endl;
p = &MCS0_MEM;
for (tmp = 0; tmp<sizeof(mcs0_mem); tmp++) {
 p[tmp] = mcs0_mem[tmp];
}
MCS0_CH0_CTRL = 0x1;
MCS0_CH1_IRQ_EN = 0x1; // enable channel 1 IRQ
MCS0_CH1_CTRL = 0x1;

// setup ATOM channels 1 and 2
cout << "Setup ATOM CH1,2..." << endl;
ATOM0_CH1_RDADDR = 0x078; // get data from MCS0 CH0
ATOM0_CH1_IRQ_EN = 0x3; // enable CCU0/1 IRQ
ATOM0_CH1_CTRL = 0x9; // ATOM0 ch1 in SOMC, ARU enabled
ATOM0_CH2_RDADDR = 0x018E007A; // get data from DPLL CH15 and MCS0 CH1
ATOM0_CH2_CTRL = 0x9; // ATOM0 CH2 in SOMC, ARU enabled

ATOM0_AGC_OUTEN_STAT = 0x0028; // enable CH1 and CH2 output
ATOM0_AGC_ENDIS_STAT = 0x0028; // enable CH1 and CH2

// setup and enable DPLL action calculation for channels 14 and 15
cout << "Enable DPLL PMTR 14, 15..." << endl;
DPLL_CTRL_3 = 0x00C0C000; // enable actions for CH14 and CH15

// initialize get of lock interrupt
cout << "Enable DPLL GL1I interrupt..." << endl;
tmp = DPLL_IRQ_EN;
tmp |=0x00002000;
DPLL_IRQ_EN = tmp;

Code 4.1: PMT Application configuration scenario.

Robert Bosch GmbH 14/17 03.07.2012

Automotive Electronics

GTM-IP Application note Revision 0.3

Robert Bosch GmbH 15/17 03.07.2012

The PMT Application note is an add-on to the micro tick application note AN011.
Therefore, functions already implemented for AN011 are reused. Please note, that
you have to install AN011 in order to get this application note AN013 to run.
The AN011 part is represented in line 01. The AN013 application note starts from line
03.
The DPLL ARU read addresses have to be defined before the DPLL is enabled.
Therefore, this is done in lines 07 and 08 while in line 09 the init_dpll() function of
AN011 is reused to start the micro tick generation.
After that, the MCS program has to be loaded. This is done with the lines 14 to 16.
For sake of simplicity, the MCS code is copied from the generated C-File to the top of
the application note.
The MCS channels are enabled and start their execution. For the MCS0 CH1 the
interrupt is enabled. This is done to get the end of the application note signaled by
this channel. The MCS channels start to initialize the system and then go into their
WURM instructions to wait for the CPU trigger. This CPU trigger is generated by the
ISR associated with the GL1I interrupt of the DPLL. This interrupt has to be enabled.
This is shown in lines 37 to 40. The ISR is described with code fragment 4.2.
The ATOM channels 1 and 2 are setup through lines 23 to 30 and the DPLL actions
are enabled with line 34.

3.1.2 AN013 Interrupt Service Routines
The dpll_an013_isr() augments the Interrupt Service Routines (ISR) from application
note AN011. As stated above, the GL1I interrupt (ISR No. 113) is used to start the
PMT application. This is done by line 15, where the both MCS channels waiting in a
WURM instruction are triggered by writing to the MCS global trigger register
MCS0_STRG.
The ATOM0 CH1 interrupt is used within ISR901 to stop the MCS0 CH0 by canceling
the ARU read request, this channel does to the DPLL. Otherwise, the MCS0 CH0
would not detect that the action time is reached and would block in the ARU read
command forever.
The ISR 401 part is described in more detail in section 3.2.

Automotive Electronics

GTM-IP Application note Revision 0.3

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

int dpll_an013_isr(int number) {

 unsigned int ach1ccu0 = 0; // match time of ATOM0 CH1 CCU0
 unsigned int ach1ccu1 = 0; // match time of ATOM0 CH1 CCU1
 unsigned int mch1r4 = 0; // match time of MCS0 CH1 R4
 // --> received from ATOM0 CH2 CCU0
 unsigned int mch1r5 = 0; // match time of MCS0 CH1 R5
 // --> received from ATOM0 CH2 CCU1

 cout << "-----> ISR call of interrupt " << dec << number << endl;

 switch (number) {
 case 113:
 cout << "DPLL GL1I interrupt" << endl;
 MCS0_STRG = 0x1; // TRIGGER MCS channel programs to start
 break;
 case 401:
 cout << "MCS0 CH1 IRQ" << endl;
 MCS0_CH1_IRQ_NOTIFY = 0x1; // clear IRQ
 // check ATOM CH0, CH1 MATCH times
 ach1ccu0 = ATOM0_CH1_SR0;
 mch1r4 = MCS0_CH1_R4;
 if ((ach1ccu0 != mch1r4) || (ach1ccu0==0) || (mch1r4==0)) {
 cout << "ERROR: Wrong TBU_TS0 match time for PMT!" << endl;
 break;
 }
 ach1ccu1 = ATOM0_CH1_SR1;
 mch1r5 = MCS0_CH1_R5;
 if ((ach1ccu1 != mch1r5) || (ach1ccu1==0) || (mch1r5==0)) {
 cout << "ERROR: Wrong TBU_TS1 match time for PMT!" << endl;
 break;
 }
 cout << "AN013 PMT checks successful." << endl;
 break;
 case 901:
 cout << "ATOM0 CH1 interrupt" << endl;
 // disable NOTIFY bit
 ATOM0_CH1_IRQ_NOTIFY = 0x3;
 // Cancel MCS0 CH0 ARU transfer --> will stop MCS0 CH0
 MCS0_RST = 0x100;
 default:
 break;
 }

 return 0;
}

Code 4.2: Interrupt Service Routines for PMT application note.

Robert Bosch GmbH 16/17 03.07.2012

Automotive Electronics

GTM-IP Application note Revision 0.3

Robert Bosch GmbH 17/17 03.07.2012

3.2 Automatic check of application
The application note AN013 checks automatically after the action time was reached,
if the two DPLL channels have calculated the same result and if the ATOM channels
created the actions at the same points in time. This is done in ISR 401 which is
shown in code fragment 4.2.
IN SOMC mode, the ATOM channels store the match times in the channels shadow
registers SR0 and SR1. These two registers can either be read by CPU or, when the
ARU interface of the channel is enabled also by a destination at the ARU.
For AN013, the MCS0 CH0 only reads values from the DPLL and writes these values
to the ATOM channel. There, the shadow registers are not read. Therefore, the two
match times have to be read by CPU. This is done in lines 21 and 27.
The MCS0 CH1 reads the shadow registers of the ATOM0 CH2 through the ARU. By
this construction, the MCS channel blocks until the ATOMs compare match event.
The result is stored in the registers R4 and R5. Please see code fragment 2.3 line 19
for this ARU read command. After that, an interrupt is raised by the channel. Please
see code fragment 2.3 line 20 for this interrupt generation. This interrupt causes ISR
401 to be called. The two match times are read from the MCS0 CH1 registers R4 and
R5 in the code fragment 4.2 lines 22 and 28. These values are compared to the
values obtained from the shadow registers R0 and R1 of ATOM0 CH1. They have to
be the same and should not be equal to zero (0).

	1 Overview
	1.1 Use case
	1.2 System architecture
	1.3 Requirements

	2 Submodule setup
	2.1 Overview
	2.2 DPLL Micro tick generation
	2.3 ARU Communication plan
	2.4 MCS Controlled action generation
	2.4.1 DPLL Configuration
	2.4.2 ATOM0 CH1 Configuration
	2.4.3 MCS0 CH0 Implementation

	2.5 DPLL Controlled action generation
	2.5.1 DPLL Configuration
	2.5.2 ATOM0 CH2 Configuration
	2.5.2.1 Register ATOM[i]_CH[x]_RDADDR (x: 0...7)

	2.5.3 MCS0 CH1 Implementation

	3 Implementation
	3.1 Overview
	3.1.1 AN013 main()
	3.1.2 AN013 Interrupt Service Routines

	3.2 Automatic check of application

