) BOSCH

Automotive Electronics
User Manual
X_CAN

X_CAN 2 | 306

Table of contents page

R 0 L Y N 5
11 FEATURES «.etttetittie ittt ittt ettt s b e e e s b e e e s e b b et s bt e e s b b e e e s ab b e e e s aba e e e s b b e e e s e b b e e s s bbb e e e aa b e e e s et a e e e s ba e e s s b e e e saatns 5
1.2 BLOCK DIAGRAM ...ciiieieieeieeee ettt e et et et e e et et et et e e e e e e e e e e e e e e e e e eaeeeaeeeeaeeaeeeaaeaeeaeatatararererererererereranananens
13 TOP -TopP LEVEL ...

1.3.1 Software Interface............
1.3.2 Functional Description
1.3.21 Fy I\ UL AT o 1=] SO PP 7
1.3.2.2 [=TT = o =T o | [T S 7
1.3.2.3 ProtOCOI CONTIOIIET ...cuiiiiiiiiiiciec e e bbb bbb e b s as e b e b e b e s s e b e e s e sbesane b s 8
1.3.24 PWIMEE ...ttt ettt ettt e e s e bttt e e s e s e b e e et e e e s e s b e et e e e e e s a s b e e e e e e e s nsb s et e e e s e s m s bbb et e e e s e anbe et e e e s eannnbeeeeeeseannrneeeeeeas 8
1.3.2.5 HArAWare DEIUE POITciiiiiiiiiiie ettt ettt e st e e et e e s bt e e s s baeeesbeeesabbeesastaeeessbeeesabbeeeansaeeenssseesanbeneansseesnnnen 8
1.3.2.6 ([=T o g0 o A eTo X o | =Y oSS 9
14 IMIH — IMIESSAGE HANDLERccitiiitittiiiie ittt a e s bbb et e e e s s s bbb s e et e e s s e bbb s s e e e e s s s b baa s e e e e s s saabaaasesesssassns 9
1.4.1 (@Y =] 4 =L PSPPI 9
1.4.2 FOATUIES ..ottt e ettt e sttt e st e s sttt st et e s ettt e s etn e s e e 10
1.4.3 1270 Yol QD o [[o I ¢ TS 10
1.4.4 SOFEWATE INTEIFUCE ...ttt e e ettt e e ettt e e ettt e e e e ats e e e eataaeeaassaaeastssaeesssaesasssaaestseaeaes 11
1.44.1 0T R =Tl =Y o T PSPPSRI 11
14.4.2 eIl DT T o o] o H TP TR PPRPOPPRN 16
1443 Local MemOry Map (L_IMEM IMAP) c.ueiiciieiieiieecteeieesteeeteesreestaesteesaaeeseestaeeseesaseesaesaseessseanseessseessaessseesassrseesssesaseessns 102
1.4.5 FUNCEIONGI DESCIIPTION ..ottt e e et e e ettt e e et a e et a e e ata e e e e sseaeastseaaaastssaeaasssasasssaanasssesesnsees 104
1451 LD LI Tl o P T Lo | =Y SRR 105
1.4.5.2 2y Y LY=Ll o = g o | =T
1.4.5.3 Descriptor Message Handler...
1.4.5.4 (DAY N T =L o = o |1
1455 LS D12 ol o o TP UPROPPRN 122
1.4.5.6 TXMeSSage HEAdEr DEfINITIONccciiiiiiiiee ettt ettt e et e e et e e e sta e e e abae e e tbaeesabeeesataeesaseeessbeeesnsaeesnsraeas 130
14.5.7 29D LT ol 4T o PP PPPPPP 132
14538 RX Message Header DEFINITIONcccuuiiiiiiee ettt et e et e e et e e et e e e e ba e e e eaabeeesabaeeesseeesasaeeesnsaeasnaneeas 137
1459 T IMIBSSABE ...ttt sttt s et e st e e e e b bt e e s b et e s ab et e e b bt e s b et e s a et s e b bt e s et e s b et e e br e e e s et e s be e e e nnre e e e 139
1.4.5.10 RX MeESSAE iN NOIMAlI IMIOTEveiiiiie ettt et e et e e e bt e e e e abe e e e abeeeeataeeeesaeeeeeabaeeassaeeansseeeansaeasnsseaeans 142
1.45.11 RX MeSsSage in CONLINUOUS IMOTE c.....eiiiiiiiiiiie ettt ettt ettt sttt e et e e st e e e bt e e e abeeesabeeesasteeesasbeesanbaeessnnaeenas 146
1.4.5.12 DeSCriptor ACKNOWIEAZEIMENTiiiiiiiiiiiiee ettt et e et e et e e e e tb e e e sabeeesbbeeeastaeeessbeeeseabaeaanssseesssseeesnsaeaansseeeans 147
1.45.13 TX FIFO QUEUE ..ttt ettt ettt e e e e ettt e e e e sttt ee e s e ane s e eeeeeesaan s e e e eeee s e aneseeeeeeesanansaeeeeeaennnnseeeeaesannrnnnaeesannnnn 149
1.4.5.14 TX PLIOFIEY QUEBUE «..eeevveiieeeieiiitee e ettt e e e s ettt e e e e e seabat e e e e e sasat b b aeeeeesassbabeaeeesasssssaaaeesesasssaneeeessansssaaeeesesansssenaaeesanses 155
1.4.5.15 RX FIFO QUEUE iN NOIM@l IMOTE......c.eiiiiiiiiiienie ettt sttt sttt b et bbbt et e sb e et e e be e b e sbe et e sbe e s e sbeensennes 159
1.4.5.16 RX FIFO Queue in CONTINUOUS MOTEcc.eiiiiiiiiiiiiiiiniiciciecte sttt st sb e bbb b b snes 166
1.4.5.17 TX FIFO QUEUE DAt FIOW ..ottt sttt sb et b e s s bt et e b sabesb e et e ebeeanesbeenaennes 169
1.4.5.18 TX Priority QUEUE Data FIOWc..ueiiuiiiiieriiieiiecie ettt ettt ettt st sae et esab e s bt e s b e e sbbe s beesaseenbeesaneeneeenseennnes 171
1.4.5.19 RX FIFO Queue Data FIOW in NOrMal IMOTE......c..oiiiiiriiiiiiieiestteeeete sttt sttt s 172
Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 3| 306

1.4.5.20 RX FIFO Queue Data Flow in Continuous Mode
1.4.5.21 TX-SCAN

1.4.5.22 TX Filter........
1.4.5.23 RX Filter
1.4.5.24 [Yor= | Y/ [=T 0 o] 4V @foT | 4 o] | 1=Y O URTSPPRUOTRN 199
1.4.5.25 I LoL<IE= L2 T I L] 0 - PSR 202
1.4.5.26 29 G [Te B I Q) =Y) ok TSP PR PRSP 208
1.4.5.27 [T <] =] g A ool T PRSP PPN 209
1.4.5.28 [T { R =T gl o f oL (=Tl A [0 o WP PP PPPPPPPPRON 210
1.4.5.29 Error and EXCEPTION HANAIINGooiiiiiiiiiiie ittt ettt ettt e e e e sttt e e s bt e e e s ataeessabeeeeeabaeasnssseessseeeennbasasnsseaeans 214
1.4.5.30 [N =T U] o 1 (SR PUPP O PPPPPPPPRON 225
1.4.5.31 CIOCK AN RESEL ..ttt bbbt bbbt sb et e bt ab e sh e et e e bt e b e sb e e bt e be e b e sbe e b e ereebe et 233
1.4.6 ViYoo) leletule gl I) o] a1 Lo L1 o] ¢ HOS S 234
14.6.1 QUEUE STATUS FIaZS...uuviiiiiiiiiiiiie ettt sttte ettt ettt e s ste e e et e e e s bt eeesateeeesebeaessbeeessbeeaastbeeessbaeessseeeanssaeesnsseessaseesansseesnnnnn 234
LL4.6.2 CIUSEEI ceietteieet ettt ettt b e s h et s e bt e bt e bt e a e bt e bt e bt e a e e bt e R e e b e e R e e Rt SR e e bt e R e e bt eh e e et e R e e bt ehe e bt eRe et e nbe e beenterenne 235
1.4.6.3 P I OIMANCES...c.eiiiiiiici bbb e e bbb bbb b e e b shaenae s 235
1.4.7 Programming GUIAEIINESueeeecueeeeeetiieeeeee e eeee e e et e e et e e sttt e e e ettt e e s sae e e s taeaasastssassssaasassssansssseeesanees 239
14.7.1 INTEIAl MH STArt PrOCRAUIE ...c.eiiiiiiiiiiiicrc bbb b e s b e bbb b e b e sbnesae s 239
14.7.2 Ry o] o] oT Lo =41 \Y, 15 W ad o Tol=Te [] o U UPURRRPPRPRROt 240
1.4.7.3 RXFIFO QUEUE INITIAI STAIT..c.ueiuiiiiiieieeieste ettt sttt ettt e b s bt et e e at et e shee b e eatenbesaeenbeeneenbesbeesesneensenae 241
1.4.7.4 REStArting @ RX FIFO QUEBUEuviiei ittt ettt tee e e e e sttt e e e s et a e e e e e e s saabaaeeeeesassabaaeeeeesasssaeseeessanssssaaeeesesnsssnnneessansssnnes 243
14.75 ADOIING @ RX FIFO QUEUE ..ttt ettt ettt sttt e sttt e st e st e e st e e eae e e bt e seseebeeeaseessnesabeeenseenneesanesneesareennnes 243
1.4.7.6 TXFIFO QUEUE INItIAl STt ..c..iiiiiiiiiiiieie ettt et st b et b e sbe e b e bt e b e sbeesbeesnere et 244
14.7.7 ReStarting @ TX FIFO QUUEUEviiiiiiiiiiiie ettt et st e ettt e s e e e e s s a e e st e e s e b e e e sabaeesenraesenaneees 246
1.4.7.8 ADOItiNG @ TX FIFO QUEUE......eiiiuiieeiiiieeeiiee ettt e e itee e sttt essataeestbeeessbaeeeasteeasssseeesssseeeassaeeasseeesssbeeasnsaaessseeesssesesnsseeanssans 246
1.4.79 TX Priority QUEUE INTLIATIZATION «..veeeieieieieeee ettt et e e st e st e e sae e e te e s s eeesseeenseessaeenteesnseeseesneeenneeenseennes 247
1.4.7.10 Starting @ TX Priority QUEUE SIOTciiiiiiiiiiie ettt s e st e et e e e s bae e e s abeeesabeeaasbeeassssbeessbeeeansaeeensseeas 248
1.4.7.11 AbOorting @ TX Priority QUEUE SIOTccuieiuieiieerieeieesie et e ste et e s e e steesteesaeeeteesreeesseesneeesseessseesseeeseesneaeseesnseenseessennn 249
1.4.7.12 L2 T LT YT] =SSP 249
1.4.7.13 TX PO SETEING .eneeteeeeet ettt ettt b e bt et e st e bt s he e s bt e st e bt s h e e b e ea e e bt s aeenbeeat e b e saeesbeembenbeenneseeeneennes 250
14.7.14 TIMEOUL SEEEING .ttt st s et r e e e s b et e s bt e s et b e e e sabaeesanneesebneeesnnes 250
1.4.8 PRT GNA ENABLE SIGNQI......ccocuieeiiieieeee ettt ettt ettt sttt et sat e e st e st e st e saseesateasasessateenaseenas 253
1.5 PRT — PROTOCOL CONTROLLER ...etttiiurtieiiirteesiistteesaiteessnatessssbtsesemae e s sabatessambe s e s esba e e s sabatessabe s e seabae e e sbabeessabaeesannaeeesnnaeas 254
1.5.1 OVBIVIBW ...ttt ettt ettt et sttt e st sttt et s bt e e an st e esas e e aatesane e s st esneenanee e 254
1.5.2 FEALUIES ...ttt ettt e sttt e st e st e sttt an e s st et sann s 254
1.5.3 1270 Yol QD o [[o I ¢ TS 254
1.54 RY o) 8o [0 (1= o [ol =3O USSR 255
1.54.1 0T R =T Y = o TS PRSP PPPPRRPPIRE 255
1.5.4.2 Yo R AT gl D LT ol g T o T o TSP PPPURPPPRUPPIRE 257
1.5.5 FUNCLIONGI DESCIIDTION ...ttt ettt sttt et et e s e st e sateesateesateasaseesaseasaneenas 270
1.5.5.1 Lo S I = ATl oo Y T={0 L= e o 271
1.5.5.2 SOTEWAIE RESEL....eeiiiiiiiiiiiienitctee e b et b et b e s e bbb bbbt st b e b e sb e b e b et 271
1.5.5.3 OPEIALING IMOUE......ceeiiieeitee ettt et e e e e et e e e ate e e e tbeeesbaeeeeataeeassaeeessaeesasbasaanssseeaasaeesasseeeanssaeeasaeesansaseasseeeanses 271
1554 Starting and StOPPING the IMOUIEcoiiiieeee ettt sab e e sab e e bt e sabeebeesaneesbeesaneens 272
Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 4306

1.5.55 Reaction on Exceptions at the TX_MSG and RX_IMSG INTEIfacescceveerieriieeriiiiiie ettt e 274
1.5.5.6 Controlling the Module’s CIOCK INPULeiiiiiieiee ettt e et e e et e e eeabe e e e sta e e e eabaeesesbeeessaeeeesaeeeenseeeensneeennnes 275
1.5.5.7 TrANSCEOIVET INTEITACE .eeniiiiiieettete ettt ettt e bt e e a bt e s bt e s et e e sae e et e e sab e e bt e sabeesabesabeessseenbeesabeenbeesaseennnes 276
15.58 [T VY T o T3 YT = o o[=SSP 276
1.5.5.9 L [T Lo Lo I D] o LU= SRR 277
1.5.6 ViYoo) [Toletule gl I) o] a0 1o L1 o] ¢ HO S 278
1.6 PWME — PULSE WIDTH MODULATION ENCODERuiitttteeeeeesiieteeee e e e sttt et e e e sttt e e e s e seanebeeeeese s annneeeeesseannnreneeeessannns 280
1.6.1 OVBIVIBW ...ttt e e ettt ettt e e ettt e sttt e et e s e st e e s asn e s s sttt e e e sn e e e s anneeeenanneasasneeesnnees
1.6.2 FOOTUIES ...ttt ettt ettt e e ettt e e a2 e ettt e e e e e e sss et e e e e e e assteeeeaeeeeaassseeeaeeaaaannes
1.6.3 1270 Yol QD o [[o I ¢ TSR
1.6.4 RY o) 8o TR [1= [ol =SOSR
1.6.4.1 PWME Configuration (PWME_CFG)......
1.6.5 Functional description......................
1.6.5.1 L 101 1= a1 11 Fo Lo [OSSP URTUPRRRPPPN
1.6.5.2 L Y =T ol o [T 1Y o o =SSR
1.7 IRC - INTERRUPT CONTROLLERuttttteeteeauutttteeeeesssutetteeeesssaussetaeeesesasssaataeeeessaassabeaaeeeesasnnneaaaeesesaannsaaaeesssannnsaaaeeessannnn

1.7.1 OVBIVIBW ...ttt ettt et e ettt e et e e sttt e e et e e et e e st e e e e aate s e s aasae e e sabt e e e e stesesaaseeeenasseaensseeesanees

1.7.2 SOFEWAIE INEEIFACE ...ttt ettt ettt ettt et e e s tesat e s bt e st e st eatesasasananieens
1.7.21 0T R =Tl Y, = o F U USPPPRSPRE
1.7.2.2 eIl DT g o o] o H PR PP

1.7.3 LV Tora oY q Lo |0 =X Yol] o1 o [o S

1.8 CLOCK DOMAINS AND RESETS ...cettteteieiuttttteeeeeaaatteteteeesesauueteeeeesesaaussteeeeeeaaaanneeeeeeeeaaaansbeeaeeeeeesannbaneeeeeeesanssnaneaesesannnnene

1.8.1 CIOCK DOIMGUNS ...ttt ettt ettt e s e et e e st e st e e sat e e at e e sate e aseesateesaseesateenaseesateenaseenas
1.8.1.1 Behavior While Not Clocked
1.8.2 ReSets...ccuuevveeiiiiiiieiiiiiiiiieie,
1.8.2.1 Behavior While Reset Active...

1.9 APPLICATION INFORMATION .etuutteeesutreeesauueesssuseeesssseeesaussessssseeesssssesssssseesssssssssssssesssssssessnssesssssssesssnsssesssssessesssseessssnessns
1.9.1 Bit RAE QNG PEIFOIMIANCE.........oocceeeeeeeeeeeeeeee e ee et e ettt e ettt e e ettt e e et e e s sae e e st aa e e stasaesassaasasssaaeasseeseannses
1.9.2 TIiME SEAMPING OFfSOL ..ottt ettt ettt e st e st e e st e st e e seesteaeseeeates

1.10 DETAILED DESIGN INFORMATIONeeteeeeeesaunnreeeeeseaaaunnrereeesssaannreneeesssaaamnraneaeesaasannreneeesesesasnnneeeeesssannnnnenesesssasnnseneeesssanans
O S |V 1T To T o VA 1=T=To KU UUS

00 I O 10 1LY PSPPSR PPPRPP

L.12 REFERENCES ..ttttteeeeaauttttteeeeeeaautttteeeeeesauuetteeeeeeaauae b et e eeeesaaas b e e e e eeeaaannbaeeeeee e e s anbe et eeeeee s nsbaeeeeeeeesannsnbeeeeeeesaannnbeeeeeeesanann

1.13 REVISION HISTORY ..ceiiiiieiiiteeesiteeeeettee e sttt e ssiteeeseubteeesnseeesaabeeeseasseeesanneeesnbeeesansseeesanseeesnseeesansseeesannneesanneeesennreeesannnens

L1.14 DISCLAIMER....cettttuuueeeeeeereruuaeeeeeresssanaaseesssssssnnasessssssssnnsesessssssssnnsesessssssssnnsesesssssssnnnsesesssssssnnesessssssssnnnesessssssssnnnesesssees

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN

1.

5| 306

X_CAN

The X_CAN is the new CAN Communication Controller IP supporting CAN XL protocol. It can be
integrated as part of a SoC. It is described in VHDL on RTL level, prepared for synthesis. The X_CAN
performs communication according to ISO11898-1:2015 and CiA610-1.

The X_CAN can be connected to a wide range of HOST CPUs via its 32bit interface. The clock domain
concept allows the separation between the high precision CAN clock and the HOST clock, which may
be generated by an FM-PLL.

1.1 Features

e Conform with 1ISO11898-1:2015 and CiA610-1

e CAN CC (CAN classic) with up to 8 data bytes and up to 1Mbit/s

¢ CAN FD (CAN flexible data rate) with up to 64 data bytes and up to 8Mbit/s

e CAN XL (CAN extended data length) with up to 2048 data bytes and up to 20Mbit/s

e 1 Priority Queue, up to 32 slots, priority based on the arbitration field of the CAN frame

¢ 8 TX FIFO queues, each with up to 1024 messages

¢ 8 RX FIFO queues, each with up to 1024 messages

e TX message filtering with up to 16 filter elements

e RX message filtering with up to 255 filter elements, while each can compare one 32bit word
(The actual usable number of filter elements depends on CAN clock frequency, CAN bit
rate, and Local Memory performance)

e Internal DMA engine, X_CAN is the DMA master for message handling

- Message storage in system memory

- Low CPU impact, any accesses to/from the system memory are done using the internal DMA

engine (less interrupts needed)

e Requires only small local memory

- Approx 4Kbytes for up to 255 RX filter elements

- Multiple X_CAN can share the same Local Memory

e Maskable module interrupts with three categories: Functional, Functional Error and Safety

e Three clock domains (HOST, CAN, TIMEBASE clock domains)

e CAN Error Logging

e Fault Injection Module

e Programmable loop-back test mode

e Power-down support

e AXI4-Lite slave interface (HOST AX/) (compliant to AMBA 4 ARM Ltd protocol, see [5])

e AXl4 master DMA interface (DMA _AX/) (compliant to AMBA 4 ARM Ltd protocol, see [5])

e AXI4 master Local Memory interface (MEM_AX/) (compliant to AMBA 4 ARM Ltd protocol, see
[51)

Version 3.9 Bosch Automotive Electronics

28 February 2024

ME-IC/PAY

X_CAN 6 | 306

1.2 Block Diagram

The following block diagram shows the internal structure of the X_CAN IP and the interconnection to
the SoC. The chapter 'Functional Description' provides detailed information to this figure.

X_CAN
xeanp-Tor Tterrupt Control Protocol Controll
nterrupt Controller rotocol Controller
. |Func_mt XCAND_TOP_IRC XCAN_PRT < CLOCAE G| Céggkcgfggik
< _
Iﬁe/esr‘:;mt ERR_INT <« PRLEVENTS cDC | |events
< coc_eVEnTs [€ HDP HDP
Controller [sAFETY.NT MH_EVENTS = >
< < l | XCAND_TOP_HDP » Debug
SAMPLE_POINT|
AXI Multiplexer RCRHOSTEAX] STAT_ACT] Bond-out
XCAND_TOP_MUX T
Peripheral HOST_AXI < PRT_REG_AX cDC REG_AXI - o ONLY_CC (static)|
<
Interconnect L CDC_AXI32 = ONLY_CC_FD (static) OTP
<

|MH_HOST AXI ___ CAPTURH cDC TIMEBASE TIME Time
Message Handler vosr_/w TMESTAMPISA| | cpc_TiMEBASE -
 mEm axi XCAND_MH EVENTS — L ase
_ CAN_RX| CAN
-
ENABLH CcDC ENABLE CAN_TX| TXD| >| Transceiver
CDC_SIGNAL D_7X|
- = PWM
Main _ |oma_axi TX_MSG] cDC TX_MSG D_RX| Encod
Interconnect [7| coc_Tx_MsG e ncoder
XCAN_PWME

Clock Check | [cLock_acTive RX_MSG| cDC RX_MSG PWME_CFG[18]| AXIBUS
e
C2C_CHECK CDC_RX_MSG —— Message Bus
Discrete wire

L_MEM - IMEM_SFTY_CE
(Local Memory

vy

IMEM_SFTY_UE

A

A

A\ 4

Y

A
A

S_MEM
(Systém Memory)

Figure: XCAND_TOP

1.3 TOP-Top Level
1.3.1 Software Interface

The registers banks of the modules are memory mapped by the AXI Multiplexer as depicted in the
following figure.

Address Map of HOST_AXI
(byte addresses, data width = 32 bit)
0x000- General
- 0x100
TX FIFO Queues
TX Priority Queue :giigg
M Handl
essage handier RX FIFO Queues
TXIRX Fiter |~ X690
Interrupt - 0x700
Miscp - 0X800
0x900 - Protocol Controller
OxA00~ Interrupt Controller
0xBOO- &

Figure: XCAND_TOP memory map
Detailed register description of Message Handler (MH), Protocol Controller (PRT) and Interrupt
Controller (IRC) can be found in the 'Software Interface' section of the respective chapters.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 7 | 306

1.3.2 Functional Description

The top level of the X_CAN IP embeds all digital blocks required for communication on one CAN bus.
To start up the X_CAN IP, the Message Handler and the Protocol Controller must be configured
beforehand. The Message Handler must be started first (writing a 1 to the MH_CTRL.START bit) and
afterwards, the Protocol Controller must be started (writing a 1 to the CTRL.STRT bit). Detailed
descriptions are provided by PRT and MH chapters later in this document.

The blocks of the top level are described in the following chapters.
1.3.2.1 AXI Multiplexer

The X_CAN embeds three register banks, containing configuration, control, status, and event
information. They are in the modules Message Handler, Protocol Controller and Interrupt controller
and are accessible via peripheral interconnect through HOST AX/interface and IP internal AXI
Multiplexer.

e When an access is performed to a non-mapped register in the address range, a SLVERR is
provided as a response.

e When a read access to write-only registers or a write access to read-only registers is performed, a
SLVERR is provided as a response.

e When a read or write access is performed outside the address range of the Interrupt Controller
and the Message Handler and the Protocol Controller, a DECERR is provided as a response.

e When a write access is performed and write strobe signals are not set to Ob1111, a SLVERR is
provided as a response. Only 32bit write access is allowed.

1.3.2.2 Message Handler

All functions concerning the storage and scheduling of CAN messages are implemented in the
Message Handler (MH). The TX path supports the storage of CAN messages in 8 TX FIFO Queues and
one TX Priority Queue. The RX path provides 8 RX FIFO Queues. FIFO data is physically stored in
System Memory (S_MEM) and managed by descriptors. TX and RX Filters provide methods to accept
or deny CAN Messages and (for RX only) to determine the target RX FIFO for data storage.

The MH will be configured and controlled by HOST CPU via HOST AX/ interface. CAN messages and
descriptors are transported between System Memory and local memory autonomously by an internal
DMA, which is connected to DMA AX/. For fast access, the MH needs a Local Memory (L_MEM) which
is connected via MEM_AX/ interface. Depending on the chosen SoC integration, multiple X_CAN IPs can
share the same local RAM.

Detailed description is provided by the MH section.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 8 | 306

1.3.2.3 Protocol Controller

The Protocol Controller (PRT) performs CAN communication as specified in ISO 11898-1:2015
(Classical CAN and CAN FD) and in CiA610-1 (CAN XL). The bitrate can be configured to values up to
20MBit/s at a clock speed of 160MHz, depending on the used semiconductor technology. For the
connection to the physical layer, additional transceiver hardware is required.

The PRT does not provide internal buffering of frames, so that data must be transferred by IP internal
Message Busses in 32 bit slices in real-time while (de)-serializing them on the CAN Bus. Thus, single
data transfers at the internal Message Busses are closely time-synchronized to the schedule at the
CAN bus.

Detailed description is provided by PRT section.
1.3.2.4 PWME

The module PWME implements the PWM encoding as specified in [2]. When transceiver mode
switching is enabled, the PWME encodes the CAN_TX input signal during a CAN XL frame’s data phase
and during ADH bit, to generate the PWM encoded output signal 7XD.

Detailed description is provided by PWME section.
1.3.2.5 Hardware Debug Port

The X_CAN provides a 16 bit Hardware Debug Port (H#DP), intended to be multiplexed to SoC output
pins in a special X_CAN hardware debug mode. Internal signals can be multiplexed to this interface
and be observed via a logic analyzer.

The use of this feature requires deep knowledge of internal behavior of the X_CAN and thus require
support from the IP provider.

The internal signals are organized in pre-defined sets which are selected by HDP.HDP_SEL. The
following tables describe the signal sets.

HDP [15:0] HDP_SEL =0 HDP_SEL =.1
(MH debug port) (PRT interface signals)
15 MH _HDP[15] TX DU
14 MH _HDP[14] RX DO
13 MH _HDP[13] BUS OFF
12 MH HDP[12] E PASSIVE
11 MH HDP[11] E ACTIVE
10 MH_HDP[10] BUS ERR
9 MH_HDP[9] TX EVT
8 MH_HDP[8] RX EVT
Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 9| 306

HDP [15:0] HDP_SEL =0 HDP_SEL =.1
(MH debug port) (PRT interface signals)
7 MH HDP[7] STAT ACT[7]
6 MH_HDP[6] STAT ACT[0]
5 MH HDP[5] XLT
4 MH_HDP[4] D RX
3 MH HDP[3] D TX
2 MH_HDP[2] SAMPLE POINT
1 MH _HDP[1] CAN_TX
0 MH HDP[O] CAN CLK

Detailed description of the MH Debug Port can be found in the 'Trace and Debug' section of the MH
chapter.

1.3.2.6 Interrupt controller

The X_CAN IP is equipped with a central interrupt controller (IRC). It captures all events of the MH
and PRT and can be configured for each event individually to interrupt the HOST CPU.

Detailed description is provided by IRC - Interrupt Controller section.

1.4 MH - Message Handler
1.4.1 Overview

The MH is located in between the main interconnect and the PRT.

It is designed to read TX CAN message data from System Memory (S_MEM) and to send them to the
PRT.

On the other direction, it provides the RX CAN message data to the S_ MEM when they are received by
the PRT.

Status feedback is given to the SW for every CAN RX and TX messages directly in the S_MEM, avoiding
register accesses.

All functions, concerning the storage and scheduling of CAN messages, are implemented in the
Message Handler (MH). The TX path supports the storage of CAN messages in 8 TX FIFO Queues and
one TX Priority Queue. The RX path provides 8 RX FIFO Queues. FIFO data is physically stored in
S_MEM and managed by descriptors. TX and RX Filters provide methods to accept or deny CAN
Messages and, for RX only, to determine the target RX FIFO for data storage.

The MH will be configured and controlled by HOST CPU via HOST AX/ interface. CAN messages and
descriptors are transported between S_ MEM and Local Memory (L_MEM) autonomously by an internal
DMA, which is connected to DMA AX/ interface. The MH needs an L_MEM, which is connected via

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 10 | 306

MEM _AX]/ interface. Depending on the chosen SoC integration, multiple X_CAN can share the same
L_MEM.

1.4.2 Features

e Functional and Error interrupts
e Safety interrupts
e Safety measures build-in:
e Data path parity protection
e Parity protection on address pointers
e linked list descriptor protected by CRC
e Register bank protected by CRC
e Interface timeout protection (PRT and AX| master interfaces)
e TX message priority based on ID and IDE and SRR and RTR
e Up to 8 TX FIFO queues can be defined
e Up to 8 RX FIFO queues can be defined
e 1 Priority Queue with a programmable number of slots, limited to 32
e TX message filtering with up to 16 filter definitions
e RX message filtering with up to 255 filter definitions
e Classical CAN and CAN FD supported
e CAN XL supported
e Fully synchronous design
e Little Endian

1.4.3 Block Diagram

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 11| 306
| b 1
| |
H L_MEM |
[|
A
MEM_AXI
XCA N D—M H Parity added on read data <
(MESSAGE HANDLER) Iy
XCAND_MH_MEM_CTRL
(LOCAL MEMORY
> MH_S_:_/IO_lcﬁﬁDEI\éIA(_AXI_ N CONTROLLER)
= i MH_SM_13 MEMCTRL
_TO_CHECK
J K
(DMAXhiéS'\‘S[j:g: Fii’\lA\lADLER)] < RX_MSG
] Write Channel0 <J N MR
g -§ (RX DMA Channe) (RX MESSAGE HANDLER) <
<2(g Write Channel1 < <
g SRS (ACK DESC DMA Channe) N
DMA_AXI > g Read Channel0 > (DE);%Q’I\‘P[‘)%AQKAEI)EESSS(;GE ENABLE
2 (RX DESC DMA Channe) HANDLER) <
> g 5
5 & 32 Read Channell [—
CLK g § (TX DESC DMA Channe) N
> e Read Channel2 =l
L (TX DMA Channel) > XCAND_MH_TX TX MSG
RESET_N L (TX MESSAGE HANDLER) — >
—..
HOST_AXI > XCAND_MH_REG <—‘
MH_SM_00_REG_REG <
CLK_AXI < _CRC_CHECK <
\AAA/
INTERRUPTS
Figure: Message Handler block diagram
1.4.4 Software Interface
1.4.4.1 Register Map
Address . . Initial
Register name Description Access
offset value
0x000 VERSION Release Identification Register read-only | 0x05600000
MH global control and status registers
0x004 MH_CTRL Message Handler Control register read-write 0x00
Message Handler Configuration .
0x008 MH_CFG L g read-write| 0x0700
register
0x00C MH_STS Message Handler Status register read-only 0x00
Message Handler Safety Configuration)
0x010 MH_SFTY_CFG e S read-write| Ox00
register
Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN

A
12| 306

B Y —— B B

ox14 MH_SFTY_CTRL Message Handler Safety Control read-write| 0x00
register

0x18 RX FILTER_ MEM_ADD |RX Filter Base Address register read-write 0x0

0x1C TX_DESC_MEM_ADD TX Descriptor Base Address register read-write 0x0

0x20 AXI_ADD_EXT AX| address extension register read-write 0x0

0x24 AXI_PARAMS AXI| parameter register read-write 0x0

0x028 MH_LOCK Message Handler Lock register read-write 0x00

TX FIFO Queues control and status registers
0x100 TX DESC ADD PT TX fjescrlptor current address pointer read-only 0x0
- - - register
0x104 TX STATISTICS Unsuccessfl.Jl and Successful message read-write 0x0
- counter registers

0x108 TX_FQ_STSO TX FIFO Queue Status register read-only 0x0

0x10C TX FQ_STS1 TX FIFO Queue Status register read-only 0x0

0x110 TX_FQ_CTRLO TX FIFO Queue Control register O read-write 0x0

0x114 TX_FQ_CTRLA1 TX FIFO Queue Control register 1 read-write 0x0

0x118 TX_FQ_CTRL2 TX FIFO Queue Control register 2 read-write 0x0
TX FIF A

0x120 TX_FQ_ADD_PTO FIFO Queue 0 Current Address read-only | 0x0
Pointer register

0x124 | TXFQ_STARTADDO |1 'O Queue 0 Start Address read-write| 0x0
register

0x128 TX_FQ_SIZEO TX FIFO Queue O Size register read-write 0x0
TX FIFO 1C t Add

0x130 TX_FQ_ADD_PT1 FIFO Queue 1 Current Address read-only 0x0
Pointer register

0x134 | TX_FQ_STARTADD1 ||x PO Queue Start Address read-write| Ox0
register

0x138 TX_FQ_SIZE1 TX FIFO Queue 1 Size register read-write 0x0
TX FIF 2 A

0x140 TX_FQ_ADD_PT2 FIFO Queue 2 Current Address read-only | 0x0
Pointer register

0x144 | TXFQSTARTADD2 |1 x''FOQueue 2 Start Address read-write| 0x0
register

0x148 TX FQ_SIZE2 TX FIFO Queue 2 Size register read-write 0x0
TX FIFO 3C t Add

0x150 TX_FQ_ADD_PT3 FIFO Queue 3 Current Address read-only 0x0
Pointer register
TX FIFO 3 Start Add

0x154 TX_FQ_START_ADD3 FIFO Queue 3 Start Address read-write| Ox0
register

0x158 TX_FQ_SIZE3 TX FIFO Queue 3 Size register read-write 0x0
TX FIF 4 Al

0x160 TX_FQ_ADD_PT4 FIFO Queue 4 Current Address read-only | Ox0
Pointer register

0x164 | TX_FQ_STARTADD4 |1/ 'FO Queue 4 Start Address read-write| 0x0
register

0x168 TX FQ_SIZE4 TX FIFO Queue 4 Size register read-write 0x0

0x170 TX_FQ_ADD_PT5 TX FIFO Queue 5 Current Address read-only 0x0

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN

A
13| 306

Pointer

B Y —— B B
Pointer register
0x174 | TX_FQ_STARTADD5 ||« 'O Queue 5 Start Address read-write| Ox0
register
0x178 TX_FQ_SIZES5 TX FIFO Queue 5 Size register read-write 0x0
0x180 TX_FQ_ADD._PT6 TX.FIFO Qu'eue 6 Current Address p—— 0x0
Pointer register
0x184 TX_FQ_START ADD6 | X FIFO Queue 6 Start Address read-write| Ox0
register
0x188 TX_FQ_SIZE6 TX FIFO Queue 6 Size register read-write 0x0
TX FIFO 7C t Add
0x190 TX_FQ_ADD_PT7 FIFO Queue 7 Current Address read-only | O0x0
Pointer register
TX FIFO 7 Start Add
0x194 TX_FQ_START_ADD7 FIFO Queue 7 Start Address read-write| Ox0
register
0x198 TX_FQ_SIZE7 TX FIFO Queue 7 Size register read-write 0x0
TX Priority Queue control and status registers
0x300 TX_PQ_STSO TX Priority Queue Status register read-only 0x0
0x304 TX_PQ_STS1 TX Priority Queue Status register read-only 0x0
0x30C TX PQ_CTRLO TX Priority Queue Control register O read-write 0x0
0x310 TX_PQ_CTRL1 TX Priority Queue Control register 1 read-write 0x0
0x314 TX PQ_CTRL2 TX Priority Queue Control register 2 read-write 0x0
0x318 TX_PQ_START_ADD TX Priority Queue Start Address read-write 0x0
RX FIFO Queues control and status registers
0x400 RX_DESC_ADD_PT RX descriptor Current Address Pointer | read-only 0x0
0x404 RX_STATISTICS Unsu.ccessful and Successful Message read-write 0x0
Received Counter
0x408 RX_FQ_STSO RX FIFO Queue Status register O read-only 0x0
0x40C RX_FQ_STS1 RX FIFO Queue Status register 1 read-only 0x0
0x410 RX_FQ_STS2 RX FIFO Queue Status register 2 read-only 0x0
0x414 RX_FQ_CTRLO RX FIFO Queue Control register 0 read-write 0x0
0x418 RX_FQ_CTRL1 RX FIFO Queue Control register 1 read-write 0x0
0x41C RX_ FQ_CTRL2 RX FIFO Queue Control register 2 read-write 0x0
0x490 RX_FQ_ADD_PTO RX.FIFO Queue 0 Current Address read-only 0x0
Pointer
O0x424 | RX_FQSTART ADDO | X FIFO Queue O link list Start read-write| Ox0
- - - Address
0x428 RX_FQ_SIZEO POARDEREiRE R A e e g
- container Size
0x42C | RX_FQ_DC_START ADDO | X FIFO Queue 0 Data Container Start | o el ox0
- - - - Address
0x430 RX_FQ_RD_ADD_PT0 | X FIFO Queue O Read Address read-write| Ox0
- -~ - Pointer
0x438 RX_FQ_ADD_PT1 RX FIFO Queue 1 Current Address read-only 0x0

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN

A
14| 306

B Y —— B B

RX FIFO 1 link list Start

0x43C RX_FQ_START_ADD1 Queue T link list Sta read-write| Ox0
Address
RX FIFO 1 link list and dat

0x440 RX_FQ_SIZE1 O Quede 1 link listand data | oadwrite| Ox0
container Size
RX FIFO 1 Data Container Start

0x444 | RX_FQ_DC_START_ADD1 Queue 1 Data Container Start | o ad-write| 0x0
Address

0x448 | RX_FQ_RDADD_PT1 |hxFIFOQueue T Read Address read-write| Ox0
Pointer
RX FIFO 2 Current Add

0x450 RX_FQ_ADD_PT?2 [FIFO Queue 2 Current Address read-only 0x0
Pointer

0x454 RX_FQ_START ADD2 | X FIFO Queue 2 link list Start read-write| Ox0
Address

0x458 RX_FQ_SIZE2 AR eneE 2 Hikdissemel eriey el g
container Size

O0x45C | RX_FQ_DC_START ADD2 | ‘X 1FO Queue 2 Data Container Start |\ ite| ox0
Address

0x460 RX_FQ_RD_ADD_pT2 | "X FIFO Queue 2 Read Address read-write| Ox0
Pointer
RX FIF A

0x468 RX_FQ_ADD_PT3 FIFO Queue 3 Current Address | o donly | 0x0
Pointer

0x46C | RX_FQ_STARTADD3 | "0 Queue 3 linklist Start read-write| 0x0
Address

0x470 RX_FQ_SIZE3 RXFIFO Queue 3 link listand data | |y write| 00
container Size

0x474 | RX_FQ_DC_START ADD3 | "0 Queue 3 Data Container Start | oy vise | oxo
Address

0x478 RX_FQ_RD_ADD_PT3 | X FIFO Queue 3 Read Address read-write| Ox0
Pointer
RX FIF 4 A

0x480 RX_FQ_ADD_PT4 FIFO Queue 4 Current Address | o donly | 0x0
Pointer

0x484 RX_FQ_START ADD4 | X FIFO Queue 4 link list Start read-write| Ox0
Address

0x488 RX_FQ_SIZE4 RXFIFO Queue 4 link listand data | |, y.write| Ox0
container Size

0x48C | RX_FQ_DC_START_ADDA | v |\ O Queue 4 Data Container Start |y \yrite | oxo
Address

0x490 | RX_FQRDADDPT4 |nxFIFOQueue4 Read Address read-write| 0x0
Pointer
RX FIF A

0x498 RX_FQ_ADD_PT5 FIFO Queue 5 Current Address | o donly | 0x0
Pointer

0x49C | RX_FQ_STARTADDS | "0 Queue S linklist Start read-write| 0x0
Address

0x4A0 RX_FQ_SIZE5 RX FIFO Queue 5 link list and data read-write 0x0

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN

A
15| 306

register 1

B Y —— B B

container Size

0x4A4 | RX_FQ_DC_START_ADDS | x| MO Queue 5 Data Container Start | ., y.vrite| ox0
Address

0x4A8 | RX_FQRDADD_PT5 |nx[IFO QueuesS Read Address read-write| Ox0
Pointer
RX FIFO 6 C t Add

0x4B0 RX_FQ_ADD_PT6 FIFO Queue & Current Address | read-only | 0x0
Pointer

0x4B4 | RX_FQSTARTADDE | x| 'FO Queue6linklist Start read-write| Ox0
Address

0x4B8 RX_FQ_SIZE6 RX FIFO Queue 6 link listand data | oy \yrite | oxo0
container Size
RX FIFO 6 Data Contai Start

0x4BC | RX_FQ_DC_START_ADDS6 Queue 6 Data Container Start | oad-write| 0x0
Address

0x4CO | RXFQRDADD_PT6 |hx ' IFO Queue 6 Read Address read-write| Ox0
Pointer
RX FIFO 7C t Add

0x4c8 RX_FQ_ADD_PT7 FIFO Queue 7 Current Address | read-only | 0x0
Pointer

0X4CC | RX_FQ_START ADD7 | PO Queue 7linklist Start read-write| Ox0
Address
RX FIFO 7 link list and dat

0x4D0 RX_FQ_SIZE7 O Quee 7link listand data | roaduwrite| Ox0
container Size
RX FIFO 7 Data Contai Start

0x4D4 | RX_FQ_DC_START_ADD? Queue 7 Data Container Start | oad-write| 0x0
Address
RX FIFO 7 Read Add

0x4D8 | RX_FQRDADD_PT7 | 'I"O Queue 7 Read Address read-write| Ox0
Pointer
TX filter control registers

0x600 TX_FILTER_CTRLO TX Filter Control register 0 read-write 0x0

0x604 TX_FILTER_CTRL1 TX Filter Control register 1 read-write 0x0

0x608 TX_FILTER_REFVALO TX Filter Reference Value register 0 read-write 0x0

0x60C TX_FILTER_REFVAL1 TX Filter Reference Value register 1 read-write 0x0

0x610 TX_FILTER_REFVAL2 TX Filter Reference Value register 2 read-write 0x0

0x614 TX FILTER REFVAL3 TX Filter Reference Value register 3 read-write 0x0
RX filter control registers

0x680 RX _FILTER CTRL RX Filter Control register read-write 0x0

Interrupts control and status registers

0X700 TXFQINT.STS | < FIFO Queue Interrupt Status read-write| Ox0
register

0x704 RX_FQINT.STS | HIFO Queue Interrupt Status read-write| Ox0
register

0x708 TXPQINT STSQ | [riority Queue Interrupt Status oy write| 0x0
register O

0X70C TX PQINT STS1 |\ Friority Queue Interrupt Status oy write| 0x0

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 16 | 306
0x710 STATS_INT_STS Statistics Interrupt Status register read-write 0x0
0x714 ERR_INT_STS Error Interrupt Status register read-write 0x0
0x718 SFTY_INT_STS Safety Interrupt Status register read-write 0x0
Ox71C AXI_ERR_INFO AXI Error Information read-only 0x0
0x720 DESC_ERR_INFOO Descriptor Error Information O read-only 0x0
0x724 DESC_ERR_INFO1 Descriptor Error Information 1 read-only 0x0
0x728 TX_FILTER_ERR_INFO | TX Filter Error Information read-only 0x0

Integration/Debug control and status registers

0x800 DEBUG_TEST_CTRL Debug Control register read-write 0x0
0x804 INT TESTO Interrupt Test register O read-write 0x0
0x808 INT_TEST1 Interrupt Test register 1 read-write 0x0
0x810 TX SCAN_FC TX-SCAN first candidates register read-only 0x0
0x814 TX_SCAN_BC TX-SCAN best candidates register read-only 0x0
0x818 | TXFQDESCVALID | Aid TXFIFO Queuedescriptorsin o0y o0y | oxo

local memory
0x81C TX_PQ_DESC_VALID Valid TX Priority Queue descriptors in p—— 0x0

local memory

CRC control registers

0x880 CRC_CTRL CRC Control register write-only 0x0
0x884 CRC_REG CRC register read-write 0x0

1.4.4.2 Register Description

1.4.4.2.1 xcand_mh_creg

REGISTER DESCRIPTION: Global MH control and status registers

SIZE:
Register Base Address: 0x000
Register Address Range: 0x900

1.4.4.2.1.71 VERSION

Release Identification Register

This register is protected by a register bank CRC defined in CRC REG register.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 17 | 306
Address | 4, 00000000 Initial Value: 0x05600000
Offset:

Bit B 2 § g 2 g

MOde o o o o o o

Initial o 0 9 S 2 =

Bit 7:0 Define the day of the release using a binary coded decimal
representation (1 being the first day of the month and so forth). This
reset value is defined by the generic parameter
DESIGN _TIME_STAMP_G[7:0]. If the generic parameter
DESIGN_TIME_STAMP_G is not set, the default value is the one defined
here

Bit 15:8 Define the month of the release using a binary coded decimal
representation (1 being January and so forth). This reset value is defined
by the generic parameter DESIGN TIME_STAMP_G[15:8]. If the generic
parameter DESIGN_TIME_STAMP_G is not set, the default value is the one
defined here

Bit 19:16 Define the year of the release using a binary coded decimal
representation (O being 2020 and so forth...). This reset value is defined
by the generic parameter DESIGN_TIME_STAMP_G[19:16]. If the generic
parameter DESIGN_TIME_STAMP_G is not set, the default value is the one
defined here

Bit 23:20 Sub-Step value according to Step

Bit 27:24 Step value according to Release

Bit 31:28 Release value, used to identify the main release of the X CAN

1.4.4.2.1.2 MH CTRL

Message Handler Control register

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN

I
18 | 306

Address
Offset:

0x00000004

Initial Value:

0x00000000

—
™)

(&
[

o)
N

0l
N

N
N

26
25

24
23
22
21

20
19
18
17
16

LO|
—

<
~

)
—

o
—

10

N Y 0 < M

Bit

START

Mode

RW

Initial

Value

0x0

Bit O

Before starting any RX/TX FIFO Queues or TX FIFO Queue slots the MH

must write 1 to this bit prior launching the PRT. At initial start, as long as
the PRT is not started, this bit can be set back to 0. When set to 1, the
global configuration registers are write-protected. As soon as the PRT is
started, this bit cannot be set to 0.
This bit can only be set to back to 0 if MH_STS.ENABLE = 0 and MH_STS.BUSY =0.
For more details on starting/stopping or restarting the MH, refer to the

Programming Guidelines chapter.

1.4.4.2.1.3 MH_CFG

Message Handler Configuration register

This register is only accessible in write mode if the MH is not started, see MH_CTRL.START = 0.
This register is protected by a register bank CRC defined in CRC REG register.

Address
Offset:

0x00000008

Initial Value:

0x00000700

—
e

(e
)

o
QY

o8l
N

~
N

26
25
24
23
22

21

20
19

18
17
16

Lo|
—

<
—

)
|

N
|

—
|

10

9

N O 1o < M

Bit

INST_NUM

MAX_RETRANS

RX CONT DC

Mode

RW

RW

RW

Initial

Value

0x0

ox7

0x0

Bit O

When set to 1, the Continuous mode is active. This mode provides the

option to have a linear and continuous memory organization of the RX
message data. Only one RX descriptor is used by RX message data and

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 19 | 306

one single data container is required. This bit field register is only
accessible in write mode if the MH is not started, see MH_CTRL.START =
0.

Bit 10:8 Maximum number of TX message re-transmissions. Different
configurations are possible: O -> no re-transmission; 1 to 6 -> 1 to 6 re-
transmissions; 7-> unlimited re-transmissions; This bit field register is
only accessible in write mode if the MH is not started, see
MH_CTRL.START = 0.

Bit 18:16 In case that a cluster of X CAN is defined, this bit field is used as a
unique identifier per instance. This identifier is used by the MH to
determine if the TX/RX descriptors are fetched by the right instance, see
RX/TX description. This bit field register is only accessible in write mode
if the MH is not started, see MH_CTRL.START = 0.

1.4.4.2.1.4 MH_STS

Message Handler Status register

Address | 0000000c Initial Value: 0x00000000

Offset:

Bit 4 : :

g 3

Mode o o o

Initial g J g

Value 7] N

Bit O This bit is the general busy flag, it is an ORED(RX/TX FIFO Queues and
TX Priority Queue slots busy flags)

Bit 4 Value of the ENABLE signal driven by the PRT. The PRT signalizes via
ENABLE whether it is active (ENABLE = 1) and requires message handling
or not (ENABLE = 0).

Bit 8 Status of MH core clock: O = clock off, 1 = clock on.

1.4.4.2.1.5 MH_SFTY CFG

Message Handler Safety Configuration register
This register is only accessible in write mode if the MH is not started, see MH_CTRL.START = 0.
This register is protected by a register bank CRC defined in CRC REG register.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 20| 306
Address -
0x00000010 Initial Value: 0x00000000
Offset:
9395899329538 29999dYydda00g9qu oo g
& 2 < 2
Bit S o 2 o
E = = z
o o s =)
Mode 2 = 2 z
Initial o o . .
Value ° © S S

Bit 7:0 This value is used by the watchdog timer for the DMA_AXI interface and
defines the maximum number of timer ticks until a read or write access
has to be completed. This value must be configured according to the
maximum system latency, expected on the DMA_AXI interface. If this
value is set to 0 and MH_SFTY_ CTRL.DMA TO EN = 1 then the
DMA TO_ERR interrupt is triggered right away when accessing the
S_MEM. This bit field register is only accessible in write mode if the MH
is not started, see MH_CTRL.START = 0.

Bit 15:8 This value is used by the watchdog timer for the MEM_AXI interface and
defines the maximum number of timer ticks until a read or write access
has to be completed. This value must be configured to the expected
maximum latency on the MEM_AXI interface. If this value is set to 0 and
MH_SFTY_CTRL.MEM_TO_EN = 1 then the MEM_TO_ERR interrupt is
triggered right away when accessing the L_MEM. This bit field register is
only accessible in write mode if the MH is not started, see
MH_CTRL.START = 0.

Bit 29:16 This value is used by the watchdog timers for the internal RX_ MSG and
TX_MSG interfaces. It defines the maximum number of timer ticks until a
message has to be transferred from PRT to MH respective MH to PRT.
The value must be configured according to the CAN frame which requires
the longest time to be transported on the CAN bus. If this value is set to
O and MH_SFTY CTRL.PRT_TO_EN = 1 then the DP_TO_ERR interrupt is
triggered right away at the beginning of a RX message or when starting a
TX message. This bit field register is only accessible in write mode if the
MH is not started, see MH_CTRL.START = 0.

Bit 31:30 Prescaler used to generate the timer ticks for the watchdogs. This bit
field register is only accessible in write mode if the MH is not started,
see MH_CTRL.START = 0. According to the value a different clock ratio
can be selected:

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 21| 306

clk divided by 32
clk divided by 64
clk divided by 128
3: clk divided by 512

N @

1.4.4.2.1.6 MH_SFTY CTRL

Message Handler Safety Control register
This register is only accessible in write mode if the MH is not started, see MH_CTRL.START = 0.
This register is protected by a register bank CRC defined in CRC _REG register.

Address -

Offset: 0x00000014 Initial Value: 0x00000000
98233 J eI Y Jd YT I3 IAANHIY g oo o 9
1 l#8ag88433
A99s2588J8¢
. g O O o o o o (&
ot 1938333384
o W S ol o o o s oo ool
&§D<§(<<DDMDO
= == = = T B~ W
Mode 122233223233z
Initial dedgs99s99¢
Val_ue g 94 9 9 9 9 9 9 g9 49 g
Bit O When set to 1, the CRC check for the TX descriptors is enabled. This bit

field register is only accessible in write mode if the MH is not started,
see MH_CTRL.START = 0.

Bit 1 When set to 1, the CRC check for the RX descriptors is enabled. This bit
field register is only accessible in write mode if the MH is not started,
see MH_CTRL.START = 0.

Bit 2 When set to 1, the sfty err signal from the local memory interface is
checked. This bit field register is only accessible in write mode if the MH
is not started, see MH_CTRL.START = 0.

Bit 3 When set to 1, the data path parity check performed on the RX path is
enabled. This bit field register is only accessible in write mode if the MH
is not started, see MH_CTRL.START = 0.

Bit 4 When set to 1, the data path parity check performed on the TX path is
enabled. This bit field register is only accessible in write mode if the MH
is not started, see MH_CTRL.START = 0.

Bit 5 When set to 1, the address pointer parity check on the TX path is
enabled. This bit field register is only accessible in write mode if the MH
is not started, see MH_CTRL.START = 0.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 22 | 306

Bit 6 When set to 1, the address pointer parity check on the RX path is
enabled. This bit field register is only accessible in write mode if the MH
is not started, see MH_CTRL.START = 0.

Bit 7 When set to 1, the read/write DMA channels routing is checked. This bit
field register is only accessible in write mode if the MH is not started,
see MH_CTRL.START = 0.

Bit 8 When set to 1, the watchdog for the DMA_AXI interface is enabled,
otherwise disabled. This bit field register is only accessible in write
mode if the MH is not started, see MH_CTRL.START = 0.

Bit 9 When set to 1, the watchdog for the MEM_AXI interface is enabled,
otherwise disabled. This bit field register is only accessible in write
mode if the MH is not started, see MH_CTRL.START = 0.

Bit 10 When set to 1, the watchdogs for the internal RX MSG and TX MSG
interfaces are enabled, otherwise disabled. This bit field register is only
accessible in write mode if the MH is not started, see MH_CTRL.START =
0.

1.4.4.2.1.7 RX_FILTER MEM_ADD

RX Filter Base Address register
This register is only accessible in write mode if the MH is not started, see MH_CTRL.START = 0.
This register is protected by a register bank CRC defined in CRC REG register.

Address | 6x00000018 Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o o o =
9 J 9 o S o O N 9 1 W O

—
—

21

—|
[S2/IeY

Bit

BASE_ADDR

Mode

RW

Initial
Value

0x0

Bit 15:0 Define the base address where the RX filter elements are defined in
L_MEM (up to 64Kbytes can be addressed). The BASE_ADDRI[1:0] bits are
always assumed to be 0bOO whatever the value written. This address
value must always be word aligned (32bit). This bit field register is only
accessible in write mode if the MH is not started, see MH_CTRL.START =
0.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 23 | 306

1.4.4.2.1.8 TX DESC MEM ADD

TX Descriptor Base Address register
This register is only accessible in write mode if the MH is not started, see MH_CTRL.START = 0.
This register is protected by a register bank CRC defined in CRC REG register.

Address | 5x0000001c Initial Value: ~ 0x00000000
Offset:
x 5
2 <
Bit 3 2
< =
g 2
Mode z z
Initial ° S
Value ° i

Bit 15:0 Define the base address where the TX FIFO Queue descriptors are stored
in L MEM (up to 64Kbytes can be addressed). The FQ_BASE_ADDRI[1:0]
bits are always assumed to be ObOO whatever the value written. This
address value must always be word aligned (32bit). This bit field register
is only accessible in write mode if the MH is not started, see
MH_CTRL.START = 0.

Bit 31:16 Define the base address where the TX Priority Queue descriptors are
stored in L MEM (up to 64Kbytes can be addressed). The
PQ_BASE_ADDRI[1:0] bits are always assumed to be 0bOO whatever the
value written. This address value must always be word aligned (32bit).
This bit field register is only accessible in write mode if the MH is not
started, see MH_CTRL.START = 0.

1.4.4.2.1.9 AX[_ADD_EXT

AXI address extension register
This register is only accessible in write mode if the MH is not started, see MH_CTRL.START = 0.
This register is protected by a register bank CRC defined in CRC REG register.

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 24 | 306

Address

0x00000020 Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o < o o o
Y 2 Y8 9 3 o o N 9 o S oo A g

21

—|
[S2/IeD

Bit

VAL

Mode

RW

Initial
Value
Bit 31:0 Define the MSB of the read/write AX| address bus used on the DMA_AXI
interface. If not required, leave the default value and do not connect the
upper part of the DMA _AXI read/write address bus. This bit field register

is only accessible in write mode if the MH is not started, see
MH_CTRL.START = 0.

0x0

1.4.4.2.1. T0AX]_PARAMS

AX| parameter register
This register is only accessible in write mode if the MH is not started, see MH_CTRL.START = 0.
This register is protected by a register bank CRC defined in CRC REG register.

Address | 6x00000024 Initial Value: 0x00000000
Offset:

: :
Bit

: 5
Mode ; :
Initial S)
Value - -

Bit 1:0 AR_MAX PEND[1:0] defines the maximum read pending transactions on
DMA_AXI interface: O -> no read transfer; 1 -> 1 outstanding read
transaction; 2 -> 2 outstanding read transactions, 3 -> 3 outstanding read
transactions. This bit field register is only accessible in write mode if the
MH is not started, see MH_CTRL.START = 0.

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 25 | 306

Bit 5:4 AW_MAX_PEND[1:0] defines the maximum write pending transactions on
DMA_AXI interface: 0 -> no write transfer; 1 -> 1 outstanding write
transaction allowed; 2 -> 2 outstanding write transactions, 3 -> 3
outstanding write transactions. This bit field register is only accessible in
write mode if the MH is not started, see MH_CTRL.START = 0.

1.4.4.2.1.TTMH_LOCK

Message Handler Lock register

Address | 6x00000028 Initial Value: 0x00000000
Offset:

Bit = =

Mode Z -

Value ° i

Bit 15:0 Unlock key register. Two consecutive writes to this bit field, starting with
0x1234 and 0x04321, must be done before writing to a register being
locked.

Bit 31:16 Test mode key register. Two consecutive writes to this bit field, starting
with 0x6789 and 0x9876, must be done before writing to the
DEBUG_TEST_CTRL register.

1.4.4.2.1.12TX DESC_ADD PT

TX descriptor current address pointer register

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 26 | 306

Address

0x00000100 Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o < o o o
Y 2 Y8 9 3 o o N 9 o S oo A g

21

—|
[S2/IeD

Bit

VAL

Mode o«

Initial

Value

Bit 31:0 Address used to fetch a TX descriptor for the TX FIFO Queues or TX
Priority Queue slots. It could be for several reasons: a new message
needs to be fetched from a TX FIFO Queue or a new message is defined
in a TX Priority Queue slot. This address value is always word aligned
(32bit).

0x0

1.4.4.2.1.13TX_STATISTICS

TX Message Counter register

Address | 0x00000104 Initial Value: 0x00000000
Offset:

ait

Mode z ;

Initial o S

Value - -

Bit 11:0 Counter incremented with every successful transmission of a CAN
message to the CAN bus. The counter wraps automatically to O and can
be cleared when writing 0 to the bit field. A STATS IRQ interrupt is
generated when the counter wraps.

Bit 27:16 Counter incremented with every unsuccessful transmission of a CAN
message to the CAN bus. The counter wraps automatically to O and can
be cleared when writing 0 to the bit field. A STATS IRQ interrupt is
generated when the counter wraps.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 27 | 306

1.4.4.2.1.714TX FQ_STSO
TX FIFO Queue Status register

Address | 11000108 Initial Value: 0x00000000
Offset:

-

Mode = B

|n|t|a|. 2 e

Value ° -

Bit 7:0 When BUSY[n] = 1 the TX FIFO Queue n is active, this means the FIFO
Queue is started and running (TX message defined in the TX FIFO Queue
n can be processed). When the BUSY[n] = O, the TX FIFO Queue n is
stopped and would require a write to the TX FQ_CTRLO.START[n] to
make it active again. A TX FIFO Queue can go inactive if the END bit in
the last TX descriptor of a TX message is set. In this case the, the
BUSY[n] = O can occur only if the TX header descriptor of this last
message has been acknowledged for the TX FIFO Queue n. When the TX
FIFO Queue n is aborted, the BUSY[n] flag is set to O only when no
acknowledge is pending.

Bit 23:16 When STOP[n] = 1 the TX FIFO Queue n is on hold, this means the FIFO
Queue is started and running but waits for the SW to keep going. The
STOP[n] can be set only if the BUSY[n] = 1. Several root causes may lead
to this state: an error is detected, or a TX descriptor is not valid. To
identify the potential issues, refer to the TX FQ_STS1 register. In order to
keep going with the TX FIFO Queue n, a write to the
TX_ FQ_CTRLO.START[n] is required. When BUSY[n] = 0, this bit is
automatically set to O

1.4.4.2.1.15TX FQ_STS1
TX FIFO Queue Status register

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 28 | 306
Address | 0x0000010c Initial Value: ~ 0x00000000
Offset:
Bit £ :
Mode = B
Initial ° S
Value ° i

Bit 7:0 When UNVALID[n] = 1 the TX FIFO Queue n is on hold due to an TX
descriptor with VALID=0 was loaded.

Bit 23:16 When ERROR[n] = 1 the TX FIFO Queue n is on hold due to an
inconsistent TX descriptor was loaded, see chapter Descriptor
Protection.

1.4.4.2.1.16TX FQ CTRLO
TX FIFO Queue Control register O

Address | 6x00000110 Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o o o =
9 J 9 o S o O N 9 1 W O

—
—

21

—|
[S2/IeY

Bit

START

Mode

RW

Initial

Value

Bit 7:0 When writing a 1 to the START[n], the TX FIFO Queue n is started. This
bit is autocleared. Once started, the TX FQ_STS0.BUSY[n] is set to 1.
The MH must be started prior to any TX FIFO Queue start (MH_STS.BUSY
set to 1). A TX FIFO Queue n <can only be started if
TX_FQ_CTRL2.ENABLE[Nn] is set to 1 and in order to avoid a dead lock
situation with the PRT, the ENABLE signal from the PRT is high.

0x0

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 29 | 306

1.4.4.2.1.17TX FQ_CTRL1

TX FIFO Queue Control register 1
This register is only accessible in write mode if the unlock key sequence has been performed prior to
write

Address
Offset:

0x00000114 Initial Value: 0x00000000

Q O o N
M N NN

26
25
24
23
22
20
19
18
17
16

o < o o — 9
DY AN O of o N 9 19 < o of o g

21

—
e

Bit

ABORT

RW

Mode

Initial

Value

Bit 7:0 When ABORT[n] is set to 1, the TX FIFO Queue n is aborted. Once set to
1, the MH will abort all pending transaction related to the TX FIFO Queue
n whenever required. This bit must be set back to 0 only when the TX
FIFO Queue n is inactive, TX_ FQ_STS0.BUSY[n] = 0. This bit field register
is only accessible in write mode if the unlock key sequence has been
performed prior to write.

0x0

1.4.4.2.1.18TX FQ_CTRL2
TX FIFO Queue Control register 2

Address | 0x00000118 Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o 8 o o - 9
9 3 9 9 09 of o N 9 1 o o 9

21

—|
[INeD

Bit

ENABLE

RW

Mode

Initial

Value

Bit 7:0 When ENABLE[Nn] is set to 1, the TX FIFO Queue n is enabled. A TX FIFO
Queue cannot be started if it is not enabled. Aborting a not started TX
FIFO Queue has no effect.

0x0

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 30 | 306

1.4.4.2.1.19TX FQ_ADD PTO
TX FIFO Queue O Current Address Pointer register

Address | 0x00000120 Initial Value: ~ 0x00000000
Offset:

Q N
N N

26
25
24
23
20
19
18
17
16

o < o o - 9
O F 9 N O Y o of N o 0 < o — g

22
21

— O O
™ o N

Bit

VAL

Mode =

Initial

Value

Bit 31:0 Provide the header descriptor address of the TX message being in used
by the arbiter for the TX FIFO Queue. To follow TX descriptors over time
while running TX FIFO Queues, refer to the TX_DESC_ADD_PT register.
This address value is always word aligned (32bit).

0x0

1.4.4.2.1.20TX FQ_START ADDO

TX FIFO Queue O Start Address register

This register is only accessible in write mode if the TX FIFO Queue 0 is not busy, see BUSY flag in
TX FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC REG register.

Address | 60000124 Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o 9 M o | 9
DY A O of o N 9 19 5 o o o g

21

| 9
[S2/IeY

Bit

VAL

RW

Mode

Initial
Value
Bit 31:0 Define the start address of the TX FIFO Queue link list descriptor in the
system memory. The VAL[1:0] bits are always assumed to be 0ObOO
whatever the value written. This address value must always be word

0x0

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 31| 306

aligned (32bit). This bit field register is only accessible in write mode if
the TX FIFO Queue 0 is not busy, see BUSY flag in TX FQ_STSO register.

1.4.4.2.1.21TX FQ_SIZEO

TX FIFO Queue 0 Size register

This register is only accessible in write mode if the TX FIFO Queue 0 is not busy, see BUSY flag in
TX FQ _STSO register.

This register is protected by a register bank CRC defined in CRC REG register.

Address | 6x00000128 Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o o o o 9
93 9 9 S o O N 9 1 W O

—
—

21

—|
[S2/IeY

Bit

MAX_DESC

RW

Mode

Initial

Value

Bit 9:0 Define the maximum number of TX descriptors in the TX FIFO Queue link
list descriptors. It is important to note that MAX DESC = 0 does not
prevent the TX FIFO Queue to be enabled and started. An active and
running TX FIFO Queue with MAX_DESC = O is not allowed and will result
in a DESC_ERR interrupt if no TX descriptor is defined. The memory size
to allocate is MAX DESC * 32bytes for MAX DESC > = 1. This bit field
register is only accessible in write mode if the TX FIFO Queue O is not
busy, see BUSY flag in TX_FQ_STSO register.

0x0

1.4.4.2.1.22TX FQ ADD PT1
TX FIFO Queue 1 Current Address Pointer register

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 32 | 306

Address

0x00000130 Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o < o o o
Y 2 Y8 9 3 o o N 9 o S oo A g

21

—|
[S2/IeD

Bit

VAL

Mode o«

Initial
Value

0x0

Bit 31:0 Provide the header descriptor address of the TX message being in used
by the arbiter for the TX FIFO Queue. To follow TX descriptors over time
while running TX FIFO Queues, refer to the TX DESC_ADD _PT register.
This address value is always word aligned (32bit).

1.4.4.2.1.23TX FQ_START ADD1

TX FIFO Queue 1 Start Address register

This register is only accessible in write mode if the TX FIFO Queue 1 is not busy, see BUSY flag in
TX FQ _STSO register.

This register is protected by a register bank CRC defined in CRC REG register.

Address | 5400000134 Initial Value: ~ 0x00000000
Offset:

o O N
N NN

26
25
24
23
22

20
19
18
17
16

o 8 o o - 9
9 3 9 9 09 of o N 9 1 o o 9

21

—|
[INeD

Bit

VAL

Mode

RW

Initial

Value

Bit 31:0 Define the start address of the TX FIFO Queue link list descriptor in the
system memory. The VAL[1:0] bits are always assumed to be 0bOO
whatever the value written. This address value must always be word
aligned (32bit). This bit field register is only accessible in write mode if
the TX FIFO Queue 1 is not busy, see BUSY flag in TX FQ_STSO register.

0x0

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 33 | 306

1.4.4.2.1.24TX FQ_SIZET

TX FIFO Queue 1 Size register

This register is only accessible in write mode if the TX FIFO Queue 1 is not busy, see BUSY flag in
TX FQ _STSO0 register.

This register is protected by a register bank CRC defined in CRC REG register.

Address | 0x00000138 Initial Value: ~ 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o0 < 9 N
— | |

10
9
8
7

= O 1 H o N - g

21

—|
[S2/IeY

Bit

MAX_DESC

RW

Mode

Initial

Value

Bit 9:0 Define the maximum number of TX descriptors in the TX FIFO Queue link
list descriptors. It is important to note that MAX DESC = O does not
prevent the TX FIFO Queue to be enabled and started. An active and
running TX FIFO Queue with MAX_DESC = 0O is not allowed and will result
in a DESC_ERR interrupt if no TX descriptor is defined. The memory size
to allocate is MAX DESC * 32bytes for MAX DESC > = 1. This bit field
register is only accessible in write mode if the TX FIFO Queue 1 is not
busy, see BUSY flag in TX_FQ_STSO register.

0x0

1.4.4.2.1.25TX FQ ADD PT2
TX FIFO Queue 2 Current Address Pointer register

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 34 | 306

Address

0x00000140 Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o < o o o
Y 2 Y8 9 3 o o N 9 o S oo A g

21

—|
[S2/IeD

VAL

Bit

Mode o«

Initial

Value

Bit 31:0 Provide the header descriptor address of the TX message being in used
by the arbiter for the TX FIFO Queue. To follow TX descriptors over time
while running TX FIFO Queues, refer to the TX DESC_ADD _PT register.
This address value is always word aligned (32bit).

0x0

1.4.4.2.1.26 TX FQ_START ADD2

TX FIFO Queue 2 Start Address register

This register is only accessible in write mode if the TX FIFO Queue 2 is not busy, see BUSY flag in
TX FQ _STSO register.

This register is protected by a register bank CRC defined in CRC REG register.

Address | 6x00000144 Initial Value: 0x00000000
Offset:

26
25
24
23
22

o 8 o o - 9
9 3 9 9 09 of o N 9 1 o o 9

20
19
18
17
16

o O N
N NN

21

—|
[INeD

Bit

VAL

RW

Mode

Initial

Value

Bit 31:0 Define the start address of the TX FIFO Queue link list descriptor in the
system memory. The VAL[1:0] bits are always assumed to be 0bO0O
whatever the value written. This address value must always be word
aligned (32bit). This bit field register is only accessible in write mode if
the TX FIFO Queue 2 is not busy, see BUSY flag in TX FQ_STSO register.

0x0

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 35 | 306

1.4.4.2.1.27TX FQ_SIZEZ

TX FIFO Queue 2 Size register

This register is only accessible in write mode if the TX FIFO Queue 2 is not busy, see BUSY flag in
TX FQ _STSO0 register.

This register is protected by a register bank CRC defined in CRC _REG register.

Address | 6x00000148 Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o0 < 9 N
— | |

10
9
8
7

O 0 < M N | 9

—
—

21

—|
[S2/IeY

Bit

MAX_DESC

RW

Mode

Initial

Value

Bit 9:0 Define the maximum number of TX descriptors in the TX FIFO Queue link
list descriptors. It is important to note that MAX DESC = O does not
prevent the TX FIFO Queue to be enabled and started. An active and
running TX FIFO Queue with MAX_DESC = 0O is not allowed and will result
in a DESC_ERR interrupt if no TX descriptor is defined. The memory size
to allocate is MAX_ DESC * 32bytes for MAX DESC > = 1. This bit field
register is only accessible in write mode if the TX FIFO Queue 2 is not
busy, see BUSY flag in TX_FQ_STSO register.

0x0

1.4.4.2.1.28TX FQ ADD PT3
TX FIFO Queue 3 Current Address Pointer register

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 36 | 306

Address

0x00000150 Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o < o o o
Y 2 Y8 9 3 o o N 9 o S oo A g

21

—|
[S2/IeD

Bit

VAL

Mode o«

Initial
Value

0x0

Bit 31:0 Provide the header descriptor address of the TX message being in used
by the arbiter for the TX FIFO Queue. To follow TX descriptors over time
while running TX FIFO Queues, refer to the TX DESC ADD_PT register.
This address value is always word aligned (32bit).

1.4.4.2.1.29TX FQ_START ADD3

TX FIFO Queue 3 Start Address register

This register is only accessible in write mode if the TX FIFO Queue 3 is not busy, see BUSY flag in
TX FQ _STSO register.

This register is protected by a register bank CRC defined in CRC REG register.

Address | 5400000154 Initial Value: ~ 0x00000000
Offset:

o O N
N NN

26
25
24
23
22

20
19
18
17
16

o 8 o o - 9
9 3 9 9 09 of o N 9 1 o o 9

21

—|
[INeD

Bit

VAL

Mode

RW

Initial

Value

Bit 31:0 Define the start address of the TX FIFO Queue link list descriptor in the
system memory. The VAL[1:0] bits are always assumed to be 0bOO
whatever the value written. This address value must always be word
aligned (32bit). This bit field register is only accessible in write mode if
the TX FIFO Queue 3 is not busy, see BUSY flag in TX FQ_STSO register.

0x0

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 37 | 306

1.4.4.2.1.30TX FQ_SIZE3

TX FIFO Queue 3 Size register

This register is only accessible in write mode if the TX FIFO Queue 3 is not busy, see BUSY flag in
TX FQ _STSO0 register.

This register is protected by a register bank CRC defined in CRC REG register.

Address | 0x00000158 Initial Value: ~ 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o0 < 9 N
— | |

10
9
8
7

= O 1 H o N - g

21

—|
[S2/IeY

Bit

MAX_DESC

RW

Mode

Initial

Value

Bit 9:0 Define the maximum number of TX descriptors in the TX FIFO Queue link
list descriptors. It is important to note that MAX DESC = 0 does not
prevent the TX FIFO Queue to be enabled and started. An active and
running TX FIFO Queue with MAX_DESC = 0O is not allowed and will result
in a DESC_ERR interrupt if no TX descriptor is defined. The memory size
to allocate is MAX DESC * 32bytes for MAX DESC > = 1. This bit field
register is only accessible in write mode if the TX FIFO Queue 3 is not
busy, see BUSY flag in TX_FQ_STSO register.

0x0

1.4.4.2.1.31TX FQ ADD PT4
TX FIFO Queue 4 Current Address Pointer register

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 38 | 306

Address

0x00000160 Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o < o o o
Y 2 Y8 9 3 o o N 9 o S oo A g

21

—|
[S2/IeD

VAL

Bit

Mode o«

Initial

Value

Bit 31:0 Provide the header descriptor address of the TX message being in used
by the arbiter for the TX FIFO Queue. To follow TX descriptors over time
while running TX FIFO Queues, refer to the TX DESC_ADD _PT register.
This address value is always word aligned (32bit).

0x0

1.4.4.2.1.32TX FQ_START ADDA4

TX FIFO Queue 4 Start Address register

This register is only accessible in write mode if the TX FIFO Queue 4 is not busy, see BUSY flag in
TX FQ _STSO register.

This register is protected by a register bank CRC defined in CRC REG register.

Address 5400000164 Initial Value: ~ 0x00000000
Offset:

26
25
24
23
22

o 8 o o - 9
9 3 9 9 09 of o N 9 1 o o 9

20
19
18
17
16

o O N
N NN

21

—|
[INeD

Bit

VAL

RW

Mode

Initial

Value

Bit 31:0 Define the start address of the TX FIFO Queue link list descriptor in the
system memory. The VAL[1:0] bits are always assumed to be 0bO0OO
whatever the value written. This address value must always be word
aligned (32bit). This bit field register is only accessible in write mode if
the TX FIFO Queue 4 is not busy, see BUSY flag in TX FQ_STSO register.

0x0

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 39 | 306

1.4.4.2.1.33TX FQ_SIZE4

TX FIFO Queue 4 Size register

This register is only accessible in write mode if the TX FIFO Queue 4 is not busy, see BUSY flag in
TX FQ _STSO register.

This register is protected by a register bank CRC defined in CRC REG register.

Address | 0x00000168 Initial Value: ~ 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o0 < 9 N
— | |

10
9
8
7

= O 1 H o N - g

21

—|
[S2/IeY

Bit

MAX_DESC

RW

Mode

Initial

Value

Bit 9:0 Define the maximum number of TX descriptors in the TX FIFO Queue link
list descriptors. It is important to note that MAX DESC = 0 does not
prevent the TX FIFO Queue to be enabled and started. An active and
running TX FIFO Queue with MAX_DESC = 0O is not allowed and will result
in a DESC_ERR interrupt if no TX descriptor is defined. The memory size
to allocate is MAX DESC * 32bytes for MAX DESC > = 1. This bit field
register is only accessible in write mode if the TX FIFO Queue 4 is not
busy, see BUSY flag in TX_FQ_STSO register.

0x0

1.4.4.2.1.34TX FQ ADD PT5
TX FIFO Queue 5 Current Address Pointer register

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 40 | 306

Address

0x00000170 Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o < o o o
Y 2 Y8 9 3 o o N 9 o S oo A g

21

—|
[S2/IeD

VAL

Bit

Mode o«

Initial

Value

Bit 31:0 Provide the header descriptor address of the TX message being in used
by the arbiter for the TX FIFO Queue. To follow TX descriptors over time
while running TX FIFO Queues, refer to the TX DESC _ADD_PT register.
This address value is always word aligned (32bit).

0x0

1.4.4.2.1.35TX FQ_START ADD5

TX FIFO Queue 5 Start Address register

This register is only accessible in write mode if the TX FIFO Queue 5 is not busy, see BUSY flag in
TX FQ _STSO register.

This register is protected by a register bank CRC defined in CRC REG register.

Address | 0x00000174 Initial Value: 0x00000000
Offset:

26
25
24
23
22

o 8 o o - 9
9 3 9 9 09 of o N 9 1 o o 9

20
19
18
17
16

o O N
N NN

21

—|
[INeD

Bit

VAL

RW

Mode

Initial

Value

Bit 31:0 Define the start address of the TX FIFO Queue link list descriptor in the
system memory. The VAL[1:0] bits are always assumed to be 0bO0OO
whatever the value written. This address value must always be word
aligned (32bit). This bit field register is only accessible in write mode if
the TX FIFO Queue 5 is not busy, see BUSY flag in TX FQ_STSO register.

0x0

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 41| 306

1.4.4.2.1.36TX FQ_SIZES

TX FIFO Queue 5 Size register

This register is only accessible in write mode if the TX FIFO Queue 5 is not busy, see BUSY flag in
TX FQ _STSO0 register.

This register is protected by a register bank CRC defined in CRC _REG register.

Address
Offset:

0x00000178 Initial Value: 0x00000000

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o0 < 9 N
— | |

10
9
8
7

O 0 < M N | 9

—
—

21

—|
[S2/IeY

Bit

MAX_DESC

RW

Mode

Initial

Value

Bit 9:0 Define the maximum number of TX descriptors in the TX FIFO Queue link
list descriptors. It is important to note that MAX DESC = O does not
prevent the TX FIFO Queue to be enabled and started. An active and
running TX FIFO Queue with MAX_DESC = 0O is not allowed and will result
in a DESC_ERR interrupt if no TX descriptor is defined. The memory size
to allocate is MAX_ DESC * 32bytes for MAX DESC > = 1. This bit field
register is only accessible in write mode if the TX FIFO Queue 5 is not
busy, see BUSY flag in TX_FQ_STSO register.

0x0

1.4.4.2.1.37TX FQ ADD PT6
TX FIFO Queue 6 Current Address Pointer register

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 42 | 306

Address

0x00000180 Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o < o o o
Y 2 Y8 9 3 o o N 9 o S oo A g

21

—|
[S2/IeD

VAL

Bit

Mode o«

Initial

Value

Bit 31:0 Provide the header descriptor address of the TX message being in used
by the arbiter for the TX FIFO Queue. To follow TX descriptors over time
while running TX FIFO Queues, refer to the TX DESC ADD_PT register.
This address value is always word aligned (32bit).

0x0

1.4.4.2.1.38TX FQ_START ADD6

TX FIFO Queue 6 Start Address register

This register is only accessible in write mode if the TX FIFO Queue 6 is not busy, see BUSY flag in
TX FQ _STSO register.

This register is protected by a register bank CRC defined in CRC REG register.

Address | 5400000184 Initial Value: ~ 0x00000000
Offset:

26
25
24
23
22

o 8 o o - 9
9 3 9 9 09 of o N 9 1 o o 9

20
19
18
17
16

o O N
N NN

21

—|
[INeD

Bit

VAL

RW

Mode

Initial

Value

Bit 31:0 Define the start address of the TX FIFO Queue link list descriptor in the
system memory. The VAL[1:0] bits are always assumed to be 0bOO
whatever the value written. This address value must always be word
aligned (32bit). This bit field register is only accessible in write mode if
the TX FIFO Queue 6 is not busy, see BUSY flag in TX FQ_STSO register.

0x0

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 43 | 306

1.4.4.2.1.39TX FQ_SIZE6

TX FIFO Queue 6 Size register

This register is only accessible in write mode if the TX FIFO Queue 6 is not busy, see BUSY flag in
TX FQ _STSO0 register.

This register is protected by a register bank CRC defined in CRC _REG register.

Address | 0x00000188 Initial Value: ~ 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o0 < 9 N
— | |

10
9
8
7

O 0 < M N | 9

—
—

21

—|
[S2/IeY

Bit

MAX_DESC

RW

Mode

Initial

Value

Bit 9:0 Define the maximum number of TX descriptors in the TX FIFO Queue link
list descriptors. It is important to note that MAX DESC = 0 does not
prevent the TX FIFO Queue to be enabled and started. An active and
running TX FIFO Queue with MAX_DESC = 0O is not allowed and will result
in a DESC_ERR interrupt if no TX descriptor is defined. The memory size
to allocate is MAX DESC * 32bytes for MAX DESC > = 1. This bit field
register is only accessible in write mode if the TX FIFO Queue 6 is not
busy, see BUSY flag in TX_FQ_STSO register.

0x0

1.4.4.2.1.40TX FQ ADD PT7
TX FIFO Queue 7 Current Address Pointer register

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 44 | 306

Address

0x00000190 Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o < o o o
Y 2 Y8 9 3 o o N 9 o S oo A g

21

—|
[S2/IeD

VAL

Bit

Mode o«

Initial

Value

Bit 31:0 Provide the header descriptor address of the TX message being in used
by the arbiter for the TX FIFO Queue. To follow TX descriptors over time
while running TX FIFO Queues, refer to the TX DESC_ADD _PT register.
This address value is always word aligned (32bit).

0x0

1.4.4.2.1.41TX FQ START ADD7

TX FIFO Queue 7 Start Address register

This register is only accessible in write mode if the TX FIFO Queue 7 is not busy, see BUSY flag in
TX FQ _STSO register.

This register is protected by a register bank CRC defined in CRC REG register.

Address 5400000194 Initial Value: ~ 0x00000000
Offset:

26
25
24
23
22

o 8 o o - 9
9 3 9 9 09 of o N 9 1 o o 9

20
19
18
17
16

o O N
N NN

21

—|
[INeD

Bit

VAL

RW

Mode

Initial

Value

Bit 31:0 Define the start address of the TX FIFO Queue link list descriptor in the
system memory. The VAL[1:0] bits are always assumed to be 0bO0OO
whatever the value written. This address value must always be word
aligned (32bit). This bit field register is only accessible in write mode if
the TX FIFO Queue 7 is not busy, see BUSY flag in TX FQ_STSO register.

0x0

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 45 | 306

1.4.4.2.1.42TX FQ_SIZE7

TX FIFO Queue 7 Size register

This register is only accessible in write mode if the TX FIFO Queue 7 is not busy, see BUSY flag in
TX FQ _STSO0 register.

This register is protected by a register bank CRC defined in CRC REG register.

Address | 0x00000198 Initial Value: ~ 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o0 < 9 N
— | |

10
9
8
7

= O 1 H o N - g

21

—|
[S2/IeY

Bit

MAX_DESC

RW

Mode

Initial

Value

Bit 9:0 Define the maximum number of TX descriptors in the TX FIFO Queue link
list descriptors. It is important to note that MAX DESC = 0 does not
prevent the TX FIFO Queue to be enabled and started. An active and
running TX FIFO Queue with MAX_DESC = 0O is not allowed and will result
in a DESC_ERR interrupt if no TX descriptor is defined. The memory size
to allocate is MAX DESC * 32bytes for MAX DESC > = 1. This bit field
register is only accessible in write mode if the TX FIFO Queue 7 is not
busy, see BUSY flag in TX_FQ_STSO register.

0x0

1.4.4.2.1.43TX PQ_STS0

TX Priority Queue Status register

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN

I
46 | 306

Address
Offset:

0x00000300

Initial Value:

0x00000000

— O O oo N
M M NN N

26
25
24
23
22
21

20
19
18
17
16

0 < M o — 9
— | | —

N Y 0 < M

Bit

BUSY

Mode

Initial
Value

0x0

Bit 31:0

When BUSY[n] = 1, the TX Priority Queue slot n is busy, which means
that the TX descriptor in the slot n is being loaded in L_ MEM and
considered by the TX-Scan. As long as this bit remains high, the message
attached to the slot n has not been sent yet. The BUSY[n] = O can occur
only if the TX header descriptor of the slot n has been acknowledged.

1.4.4.2.1.44TX PQ_STS17

TX Priority Queue Status register

Address
Offset:

0x00000304

Initial Value:

0x00000000

— O O o N
M o N N

26
25
24
23
22

21

20
19

18
17
16

o < M o | g
— | v | v

N O 1o < M

Bit

SENT

Mode

Initial
Value

0x0

Bit 31:0

1.4.4.2.1.45TX PQ_CTRLO

When SENT[n] = 1 the TX message assigned to the TX Priority Queue slot
n has been transmitted and the TX descriptor attached to the slot n is
acknowledged. This bit will be cleared once a new start on this slot will

Ooccur.

TX Priority Queue Control register O

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 47 | 306

Address

0x0000030c Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o < o o o
Y 2 Y8 9 3 o o N 9 o S oo A g

21

—|
[S2/IeD

Bit

START

Mode

RW

Initial

Value

Bit 31:0 When writing a 1 to the START[n], the TX Priority Queue slot n is started
and running. This bit is autocleared and once started, the
TX_PQ_STS0.BUSY[n] is set to 1. The MH must be started prior to any TX
Priority Queue slot start (MH_STS.BUSY set to 1). A TX Priority Queue
slot n can only be started if TX PQ_CTRL2.ENABLE[Nn] is set to 1 and in
order to avoid a dead lock situation with the PRT, the ENABLE signal
from the PRT is high.

0x0

1.4.4.2.1.46TX PQ_CTRL17

TX Priority Queue Control register 1

This register is only accessible in write mode if the unlock key sequence has been performed prior to
write
Address
Offset:

0x00000310 Initial Value: 0x00000000

o O N
N NN

26
25
24
23
22

20
19
18
17
16

o < M
— v v v

— o
O 9 of o N o 1 & o o — 9

21

—| g
(32 INeD

Bit

ABORT

Mode

RW

Initial
Value
Bit 31:0 When ABORT[n] is set to 1, the TX Priority Queue slot n is aborted. This
bit must be set back to 0 only when the TX Priority Queue slot n is
inactive, TX FQ_STS0.BUSY[n] = 0. A TX message attached to a slot can
only be aborted if it is not stored in the two internal buffers holding the

0x0

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 48 | 306

two best candidates for the next TX message. Despite a TX message is
aborted, it may have been sent, check the TX PQ_STS1.SENT[n] bit
register for the slot n. This bit field register is only accessible in write
mode if the unlock key sequence has been performed prior to write.

1.4.4.2.1.47TX PQ_CTRL2
TX Priority Queue Control register 2

Address | 6x00000314 Initial Value: ~ 0x00000000
Offset:

Q O o N
M N NN

26
25
24
23
22

20
19
18
17
16

o < o o | 9
DY AN O of o N 9 19 < o of o g

21

—
e

Bit

ENABLE

Mode

RW

Initial
Value
Bit 31:0 When ENABLE[Nn] is set to 1, the slot n in the TX Priority Queue is

enabled. A TX Priority Queue slot cannot be started if not enabled.
Aborting a not started slot n has no effect

0x0

1.4.4.2.1.48TX PQ_START ADD

TX Priority Queue Start Address

This register is only accessible in write mode if the TX Priority Queue is not busy, see BUSY flag in
TX PQ _STS register. It means TX PQ _STS register is equal to 0x0.

This register is protected by a register bank CRC defined in CRC REG register.

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN

I
49 | 306

Address
Offset:

0x00000318

Initial Value:

0x00000000

— O O oo N
M M NN N

26
25
24
23
22
21

20
19
18
17
16

[To I ISP IS
— | |

(e
—

N Y 0 < M

Bit

VAL

Mode

RW

Initial
Value

0x0

Bit 31:0

Define the start address of the TX Priority Queue in the system memory.
All TX header descriptors in the TX Priority Queue are continuously
defined from this start address. The VAL[1:0] bits are always assumed to
be O0b00 whatever the value written. This address value must always be
word aligned (32bit). This bit field register is only accessible in write
mode if the TX Priority Queue is not busy, see BUSY flag in TX PQ_STS

register

1.4.4.2.1.49RX DESC_ADD PT

RX descriptor Current Address Pointer

Address
Offset:

0x00000400

Initial Value:

0x00000000

— O O) oo N
M M NN N

26
25
24
23
22
21

20
19
18
17
16

0 < 9 N
— | |

—
—

(e
—

N O o < M

Bit

VAL

Mode

Initial
Value

0x0

Bit 31:0

Provide the address used to fetch the current RX descriptor. This address
value is always word aligned (32bit).

1.4.4.2.71.50RX STATISTICS

RX Message Counter register

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 50 | 306
Aderess 0x00000404 Initial Value: 0x00000000
8 (@]
Bit : :
Mode Z i
Initial o S
Value - -

Bit 11:0 Counter incremented with every successful reception of a CAN message
from the CAN bus. The counter wraps automatically to O and can be
cleared when writing 0x00 to the bit field. An interrupt is generated
when the counter wraps.

Bit 27:16 Counter incremented with every unsuccessful reception of a CAN
message from the CAN bus. The counter wraps automatically to 0 and
can be cleared when writing 0x00 to the bit field. . An interrupt is
generated when the counter wraps.

1.4.4.2.1.51RX FQ _STSO
RX FIFO Queue Status register O

Address | ;. 50000408 Initial Value: 0x00000000
Offset:

Bit

Mode = :

Initial ° S

Value ° i

Bit 7:0 When BUSY[n] = 1 the RX FIFO Queue n is busy, this means the FIFO
Queue is started and running (RX message to be written to the RX FIFO
Queue can be processed). When the BUSY[n] = O, the RX FIFO Queue n
is stopped and would require a write to the RX FQ_CTRLO.START[n] to

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 51 | 306

make it active again. When the RX FIFO Queue n is aborted, the BUSY[n]
flag is set to 0 only when no acknowledge is pending.

Bit 23:16 When STOP[n] = 1 the RX FIFO Queue n is on hold, it means started but
waiting for the SW to react. The STOP[n] can be set only if the BUSY[n] =
1. Several root causes may lead to the RX FIFO Queue n to stop: an error
is detected, or an RX descriptor is not valid, or the FIFO is full. To
identify the potential issues, refer to the RX FQ_STS1 and RX_ FQ_STS2
registers. In order to keep going with the RX FIFO Queue n, a write to the
RX_FQ_CTRLO.START[n] is required. When BUSY[n] = O, this bit is
automatically set to O

1.4.4.2.1.52RX FQ_STS17
RX FIFO Queue Status register 1

Address | 5x0000040¢ Initial Value: ~ 0x00000000
Offset:
. =
Bit = :
Mode = -
Value o -

Bit 7:0 When UNVALID[n] = 1 the RX FIFO Queue n is on hold due to an RX
descriptor detected with VALID=0

Bit 23:16 When ERROR[n] = 1 the RX FIFO Queue n is on hold due to an
inconsistent RX descriptor being loaded, see chapter Descriptor
Protection.

1.4.4.2.1.53RX FQ_STS2
RX FIFO Queue Status register 2

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN

52 | 306

Address
Offset:

0x00000410 Initial Value: 0x00000000

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o < o o o
Y 2 Y8 9 3 o o N 9 o S oo A g

21

—|
[S2/IeD

Bit

DC_FULL

Mode

Initial
Value

0x0

Bit 7:0

When DC_FULL[n] = 1 the RX FIFO Queue n is stopped due to the RX
FIFO Queue n being full. This register is relevant only for the Continuous
Mode as in Normal mode, there is no need to provide such information to
the MH

1.4.4.2.1.54RX FQ CTRLO
RX FIFO Queue Control register O

Address
Offset:

0x00000414 Initial Value: 0x00000000

@ N
[V

26
25
24
23
20
19
18
17
16

o < o o - o
O J 9 N O Q4 o ff N o 6 o 8 of — 9

22
21

— O O
M o N

Bit

START

Mode

RW

Initial
Value

0x0

Bit 7:0

When writing a 1 to the START[n], the RX FIFO Queue n is started. This
bit is autocleared and once started, the RX FQ_STS0.BUSY[n] is set to 1.
The MH must be started prior to any RX FIFO Queue start (MH_STS.BUSY
set to 1). An RX FIFO Queue n can only be started if
RX_ FQ CTRL2.ENABLE[N] is set to 1.

1.4.4.2.1.55RX FQ CTRL1
RX FIFO Queue Control register 7

Version 3.9

28 February 2024

ME-IC/PAY

Bosch Automotive Electronics

X_CAN 53 | 306

This register is only accessible in write mode if the unlock key sequence has been performed prior to
write

Address
Offset:

0x00000418 Initial Value: 0x00000000

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o < o o o
A 2 Y 9 3 o o N 9 o N o o A g

—

21

—|
[S2/IeD

Bit

ABORT

Mode

RW

Initial

Value

Bit 7:0 When ABORT[n] is set to 1, the RX FIFO Queue n is aborted. Once set to
1, the MH will abort all pending transactions related to the RX FIFO
Queue n whenever required. The abort can be effective only if the RX
FIFO Queue n is enabled. This bit must be set back to O only when the
RX FIFO Queue n is inactive, RX_ FQ _STS0.BUSY[n] = 0. This bit field
register is only accessible in write mode if the unlock key sequence has
been performed prior to write.

0x0

1.4.4.2.1.56RX FQ_CTRLZ2
RX FIFO Queue Control register 2

Address | 5000041c Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o 8 o o - 9
9 3 9 9 09 of o N 9 1 o o 9

21

—| g
(32 INeD

Bit

ENABLE

Mode

RW

Initial

Value

Bit 7:0 When ENABLE[Nn] is set to 1, the RX FIFO Queue n is enabled. The RX
FIFO Queue n cannot be started if not enabled. The abort of an RX FIFO
Queue n not started would have no effect.

0x0

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN

1.4.4.2.1.57RX FQ _ADD _PTO

RX FIFO Queue 0 Current Address Pointer

I
54 | 306

Address
Offset:

0x00000420

Initial Value:

0x00000000

—
o)

Q)
o)

o
QY

Ol
QY

~
N

26
25
24
23
22

21

20
19
18
17
16

LO|
—

<
—

)
—

N
—

—
—

10

e

LO|

<

o)

Bit

VAL

Mode

Initial
Value

0x0

Bit 31:0

Provide the current RX Header Descriptor address pointer for the RX
FIFO Queue O in the system memory. To follow RX descriptor over time,
refer to the RX DESC_ADD_PT register. This address value is always word
aligned (32bit).

1.4.4.2.1.58RX FQ_START ADDO
RX FIFO Queue O link list Start Address

This register is only accessible in write mode if the RX FIFO Queue O is not busy, see BUSY flag in
RX FQ_STS0 register.
This register is protected by a register bank CRC defined in CRC REG register.

Address
Offset:

0x00000424

Initial Value:

0x00000000

—
™)

(&
[

o
N

0l
N

~
N

26
25

24
23
22
21

20
19
18
17
16

Lo|
—

<
|

)
—

o
—

|
—

10

N O

<

Bit

VAL

Mode

RW

Initial
Value

0x0

Bit 31:0

Define the start address of the RX FIFO Queue link list descriptor in
system memory. The VAL[1:0] bits are always assumed to be 0bOO
whatever the value written. This address value must always be word

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 55 | 306

aligned (32bit). This register is only accessible in write mode if the RX
FIFO Queue 0 is not busy, see BUSY flag in RX_FQ_STSO register

1.4.4.2.1.59RX FQ_SIZEO

RX FIFO Queue 0 link list and data container Size

This register is only accessible in write mode if the RX FIFO Queue O is not busy, see BUSY flag in
RX_ FQ_STS50 register.

This register is protected by a register bank CRC defined in CRC REG register.

Address |, 00000428 Initial Value: 0x00000000
Offset:
Bit ” S,
= =
Mode 2 z
Value ° °
Bit 9:0 Define the maximum number of descriptors in the RX FIFO Queue link

list. It is important to note that MAX DESC = O does not prevent the RX
FIFO Queue to be enabled and started. An active and running RX FIFO
Queue with MAX_DESC = 0 is not allowed and will result in a DESC_ERR
interrupt if no RX descriptor is defined. The size to be allocated to the
link list must be equal to MAX_DESC * 16bytes for MAX DESC >= 1. This
register is only accessible in write mode if the RX FIFO Queue O is not
busy, see BUSY flag in RX_FQ_STSO register

Bit 27:16 In Normal mode only the DC_SIZE[6:0] is used to define the maximum
size of an RX data container for the RX FIFO Queue. The data container
size is DC_SIZE[6:0] * 32bytes and one is attached to every RX
descriptor. In continuous mode, it defines the size of the single data
container used to write all RX messages. The overall data container size
is DC_SIZE[11:0] * 32bytes for MAX DESC > = 1. When set to 0, the RX
FIFO Queue can be enabled but not started. This register is only
accessible in write mode if the RX FIFO Queue 0 is not busy, see BUSY
flag in RX_FQ_STSO register

1.4.4.2.1.60RX FQ_DC_START ADDO

RX FIFO Queue 0 Data Container Start Address
This register is accessible in write mode if the RX FIFO Queue 0 is not busy, see BUSY flag in
RX_ FQ_STS0 register.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 56 | 306

This register is protected by a register bank CRC defined in CRC REG register. This register is used
only in Continuous Mode

Address | 5 6000042¢ Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o < o o o
A 2 Y 9 3 o o N 9 o N o o A g

—

21

—|
[S2/IeD

Bit

VAL

RW

Mode

Initial

Value

Bit 31:0 Define the Data Container Start Address in system memory. This bit field
is relevant only when the MH is configured in Continuous Mode. The
VAL[1:0] bits are always assumed to be 0b0O0O whatever the value written.
This address value must always be word aligned (32bit). This register is
only accessible in write mode if the RX FIFO Queue 0 is not busy, see
BUSY flag in RX_ FQ_STSO register

0x0

1.4.4.2.1.61RX FQ_RD_ADD PTO
RX FIFO Queue 0 Read Address Pointer

This register is used only in Continuous Mode.

Address | 50000430 Initial Value: 0x00000000
Offset:

20
19
18
17
16

o 8 o o - 9
93 9 9 09 of o N 9 1 o 9

o O N
N NN

26
25
24
23
22

21

—|
[INeD

Bit

VAL

Mode

RW

Initial
Value
Bit 31:0 The SW uses this register to indicate the Data Read Address of the RX
message being read to the MH. This address must point to the last word
of the RX message considered in the data container. This bit field is
relevant only when the MH is configured in Continuous mode. The MH

0x0

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN

I
57 | 306

uses this information to ensure that enough memory space is available to
write the next message. For an initial start, it is mandatory to set
VAL[1:0] to Ob11, to avoid RX FQ_ RD_ADD_PTO register to be equal to
the RX_FQ_START _ADDRO registers. Excepted for the initial value, the
address value must always be word aligned (32bit), VAL[1:0] must be set
to 0b0O.

1.4.4.2.1.62RX FQ ADD PT17

RX FIFO Queue 1 Current Address Pointer

Address
Offset:

0x00000438

Initial Value:

0x00000000

—
e

(e
)

o
QY

o8]
QY

~
N

26

25

24

23

22
21

20

19
18
17
16

Lo|
—

<
~

)
—

o
—

—
—

10

N O 1 < M o | g9

Bit

VAL

Mode

Initial
Value

0x0

Bit 31:0

Provide the current RX Header Descriptor address pointer for the RX

FIFO Queue 1 in the system memory. To follow RX descriptor over time,
refer to the RX_DESC_ADD PT register. This address value is always word
aligned (32bit).

7.4.4.2.1.63RX FQ_START_ADD1

RX FIFO Queue 1 link list Start Address
This register is only accessible in write mode if the RX FIFO Queue 1 is not busy, see BUSY flag in

RX FQ_STS50 register.
This register is protected by a register bank CRC defined in CRC REG register.

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN

I
58 | 306

Address
Offset:

0x0000043c

Initial Value:

0x00000000

— O O oo N
M M NN N

26
25
24
23
22
21

20
19
18
17
16

[To I ISP IS
— | |

(e
—

N Y 0 < M

Bit

VAL

Mode

RW

Initial
Value

0x0

Bit 31:0

Define the start address of the RX FIFO Queue link list descriptor in
system memory. The VAL[1:0] bits are always assumed to be 0bOO
whatever the value written. This address value must always be word
aligned (32bit). This register is only accessible in write mode if the RX
FIFO Queue 1 is not busy, see BUSY flag in RX_FQ_STSO register

1.4.4.2.1.64RX FQ_SIZET

RX FIFO Queue 1 link list and data container Size

This register is only accessible in write mode if the RX FIFO Queue 1 is not busy, see BUSY flag in
RX FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC REG register.

Address
Offset:

0x00000440

Initial Value:

0x00000000

— O O oo N
M M NN N

26
25
24
23
22
21

20
19
18
17
16

o0 < M
— | |

|
—

e
—

N O o < M

Bit

DC_SIZE

MAX_DESC

Mode

RW

Initial
Value

0x0

0x0

Bit 9:0

Define the maximum number of descriptors in the RX FIFO Queue link
list. It is important to note that MAX_DESC = 0 does not prevent the RX
FIFO Queue to be enabled and started. An active and running RX FIFO
Queue with MAX_DESC = 0 is not allowed and will result in a DESC_ERR
interrupt if no RX descriptor is defined. The size to be allocated to the

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 59 | 306

link list must be equal to MAX_DESC * 16bytes for MAX DESC >= 1. This
register is only accessible in write mode if the RX FIFO Queue 1 is not
busy, see BUSY flag in RX_FQ_STSO register

Bit 27:16 In Normal mode only the DC_SIZE[6:0] is used to define the maximum
size of an RX data container for the RX FIFO Queue. The data container
size is DC_SIZE[6:0] * 32bytes and one is attached to every RX
descriptor. In continuous mode, it defines the size of the single data
container used to write all RX messages. The overall data container size
is DC_SIZE[11:0] * 32bytes for MAX DESC > = 1. When set to O, the RX
FIFO Queue can be enabled but not started. This register is only
accessible in write mode if the RX FIFO Queue 1 is not busy, see BUSY
flag in RX_FQ_STSO register

1.4.4.2.1.65RX FQ DC_START ADD1

RX FIFO Queue 1 Data Container Start Address

This register is accessible in write mode if the RX FIFO Queue 1 is not busy, see BUSY flag in

RX_ FQ_STS50 register.

This register is protected by a register bank CRC defined in CRC REG register. This register is used
only in Continuous Mode

Address | ;. 50000444 Initial Value: 0x00000000
Offset:

@ N
[V

26
25
24
23
20
19
18
17
16

o < o of o o
O J 9 N O Q4 o off N o 6 o 8 of — 9

22
21

— O O
M o N

Bit

VAL

Mode

RW

Initial

Value

Bit 31:0 Define the Data Container Start Address in system memory. This bit field
is relevant only when the MH is configured in Continuous Mode. The
VAL[1:0] bits are always assumed to be 0b0O0O whatever the value written.
This address value must always be word aligned (32bit). This register is
only accessible in write mode if the RX FIFO Queue 1 is not busy, see
BUSY flag in RX_FQ_STSO register

0x0

1.4.4.2.1.66RX FQ_RD_ADD_PT1

RX FIFO Queue 1 Read Address Pointer
This register is used only in Continuous Mode.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN

I
60 | 306

Address

Offset: 0x00000448

Initial Value:

0x00000000

o O N
N NN

26
25
24
23
22

—|
[S2/IeD

21

20
19
18
17
16

LO|
—

<
~

)
—

o
—

(e
—

N

|

LO|

<

(82

Bit

VAL

Mode

RW

Initial
Value

0x0

Bit 31:0

The SW uses this register to indicate the Data Read Address of the RX

message being read to the MH. This address must point to the last word
of the RX message considered in the data container. This bit field is
relevant only when the MH is configured in Continuous mode. The MH
uses this information to ensure enough memory space is available to
write the next message. For an initial start, it is mandatory to set
VAL[1:0] to Ob11, to avoid RX_FQ_RD_ADD_PT1 register to be equal to
the RX_FQ_START_ADDR1 registers. Excepted for the initial value, the
address value must always be word aligned (32bit), VAL[1:0] must be set

to Ob0O.

1.4.4.2.1.67RX FQ ADD PT2
RX FIFO Queue 2 Current Address Pointer

Address
Offset: 0x00000450

Initial Value:

0x00000000

o O N
N NN

26
25
24
23
22

| 9
[S2/IeY

21

20
19
18
17
16

LO|
—

<
|

o)
—

o
—

e
—

~

e

LO|

<

(82

Bit

VAL

Mode

Initial
Value

0x0

Bit 31:0

Provide the current RX Header Descriptor address pointer for the RX

FIFO Queue 2 in the system memory. To follow RX descriptor over time,

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 61 | 306

refer to the RX_DESC_ADD PT register. This address value is always word
aligned (32bit).

1.4.4.2.1.68RX FQ START ADDZ2

RX FIFO Queue 2 link list Start Address

This register is only accessible in write mode if the RX FIFO Queue 2 is not busy, see BUSY flag in
RX_ FQ_STS50 register.

This register is protected by a register bank CRC defined in CRC _REG register.

Address | 0x00000454 Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o0 < 9 N
— | |

10
9
8
7
6
5
4
3
2
1
[0]

—
—

21

—|
[S2/IeY

Bit

VAL

Mode

RW

Initial

Value

Bit 31:0 Define the start address of the RX FIFO Queue link list descriptor in
system memory. The VAL[1:0] bits are always assumed to be ObOO
whatever the value written. This address value must always be word
aligned (32bit). This register is only accessible in write mode if the RX
FIFO Queue 2 is not busy, see BUSY flag in RX_FQ_STSO register

0x0

1.4.4.2.1.69RX FQ _SIZE2

RX FIFO Queue 2 link list and data container Size

This register is only accessible in write mode if the RX FIFO Queue 2 is not busy, see BUSY flag in
RX_ FQ_STS50 register.

This register is protected by a register bank CRC defined in CRC REG register.

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 62 | 306
Address | 00000458 Initial Value: 0x00000000
Offset:
Bit ? S,
e s
Mode 2 z
Initial S S
Value ° °
Bit 9:0 Define the maximum number of descriptors in the RX FIFO Queue link

list. It is important to note that MAX DESC = O does not prevent the RX
FIFO Queue to be enabled and started. An active and running RX FIFO
Queue with MAX_DESC = 0 is not allowed and will result in a DESC_ERR
interrupt if no RX descriptor is defined. The size to be allocated to the
link list must be equal to MAX DESC * 16bytes for MAX_DESC >= 1. This
register is only accessible in write mode if the RX FIFO Queue 2 is not
busy, see BUSY flag in RX_FQ_STSO register

Bit 27:16 In Normal mode only the DC_SIZE[6:0] is used to define the maximum
size of an RX data container for the RX FIFO Queue. The data container
size is DC_SIZE[6:0] * 32bytes and one is attached to every RX
descriptor. In continuous mode, it defines the size of the single data
container used to write all RX messages. The overall data container size
is DC_SIZE[11:0] * 32bytes for MAX DESC > = 1. When set to 0, the RX
FIFO Queue can be enabled but not started. This register is only
accessible in write mode if the RX FIFO Queue 2 is not busy, see BUSY
flag in RX_FQ_STSO register

1.4.4.2.1.70RX FQ_DC_START ADD2

RX FIFO Queue 2 Data Container Start Address

This register is accessible in write mode if the RX FIFO Queue 2 is not busy, see BUSY flag in

RX FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register. This register is used
only in Continuous Mode

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 63 | 306

Address

0x0000045c Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o < o o o
Y 2 Y8 9 3 o o N 9 o S oo A g

21

—|
[S2/IeD

Bit

VAL

Mode

RW

Initial
Value

0x0

Bit 31:0 Define the Data Container Start Address in system memory. This bit field
is relevant only when the MH is configured in Continuous Mode. The
VAL[1:0] bits are always assumed to be 0b0OO whatever the value written.
This address value must always be word aligned (32bit). This register is
only accessible in write mode if the RX FIFO Queue 2 is not busy, see
BUSY flag in RX_FQ_STSO register

1.4.4.2.1.71RX FQ_RD_ADD PT2
RX FIFO Queue 2 Read Address Pointer

This register is used only in Continuous Mode.

Address | 50000460 Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o 8 o o - 9
9 3 9 9 09 of o N 9 1 o o 9

21

—| g
(32 INeD

Bit

VAL

Mode

RW

Initial
Value
Bit 31:0 The SW uses this register to indicate the Data Read Address of the RX
message being read to the MH. This address must point to the last word
of the RX message considered in the data container. This bit field is
relevant only when the MH is configured in Continuous mode. The MH
uses this information to ensure enough memory space is available to
write the next message. For an initial start, it is mandatory to set

0x0

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 64 | 306

VAL[1:0] to Ob11, to avoid RX FQ_RD _ADD_PT2 register to be equal to
the RX_FQ_START _ADDR2 registers. Excepted for the initial value, the
address value must always be word aligned (32bit), VAL[1:0] must be set
to 0b00.

1.4.4.2.1.72RX FQ ADD PT3
RX FIFO Queue 3 Current Address Pointer

Address |y 10000468 Initial Value: 0x00000000
Offset:

Q O o N
M N NN

26
25
24
23
22
20
19
18
17
16

o0 < M N
— | v] v

10
9
8
7
6
5

< o N v g

21

—
e

Bit

VAL

Mode =

Initial
Value

0x0

Bit 31:0 Provide the current RX Header Descriptor address pointer for the RX
FIFO Queue 3 in the system memory. To follow RX descriptor over time,
refer to the RX_ DESC_ADD _PT register. This address value is always word
aligned (32bit).

1.4.4.2.1.73RX_ FQ_START_ADD3

RX FIFO Queue 3 link list Start Address

This register is only accessible in write mode if the RX FIFO Queue 3 is not busy, see BUSY flag in
RX FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC REG register.

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN

I
65 | 306

Address
Offset:

0x0000046¢

Initial Value:

0x00000000

— O O oo N
M M NN N

26
25
24
23
22
21

20
19
18
17
16

[To I ISP IS
— | |

(e
—

N Y 0 < M

Bit

VAL

Mode

RW

Initial
Value

0x0

Bit 31:0

Define the start address of the RX FIFO Queue link list descriptor in
system memory. The VAL[1:0] bits are always assumed to be 0ObOO
whatever the value written. This address value must always be word
aligned (32bit). This register is only accessible in write mode if the RX
FIFO Queue 3 is not busy, see BUSY flag in RX_ FQ_STSO register

1.4.4.2.1.74RX FQ_SIZE3

RX FIFO Queue 3 link list and data container Size

This register is only accessible in write mode if the RX FIFO Queue 3 is not busy, see BUSY flag in
RX FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC REG register.

Address
Offset:

0x00000470

Initial Value:

0x00000000

— O O oo N
M M NN N

26
25
24
23
22
21

20
19
18
17
16

o0 < M
— | |

|
—

e
—

N O o < M

Bit

DC_SIZE

MAX_DESC

Mode

RW

Initial
Value

0x0

0x0

Bit 9:0

Define the maximum number of descriptors in the RX FIFO Queue link
list. It is important to note that MAX_DESC = 0 does not prevent the RX
FIFO Queue to be enabled and started. An active and running RX FIFO
Queue with MAX_DESC = 0 is not allowed and will result in a DESC_ERR
interrupt if no RX descriptor is defined. The size to be allocated to the

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 66 | 306

link list must be equal to MAX_DESC * 16bytes for MAX DESC >= 1. This
register is only accessible in write mode if the RX FIFO Queue 3 is not
busy, see BUSY flag in RX_FQ_STSO register

Bit 27:16 In Normal mode only the DC_SIZE[6:0] is used to define the maximum
size of an RX data container for the RX FIFO Queue. The data container
size is DC_SIZE[6:0] * 32bytes and one is attached to every RX
descriptor. In continuous mode, it defines the size of the single data
container used to write all RX messages. The overall data container size
is DC_SIZE[11:0] * 32bytes for MAX DESC > = 1. When set to 0, the RX
FIFO Queue can be enabled but not started. This register is only
accessible in write mode if the RX FIFO Queue 3 is not busy, see BUSY
flag in RX_FQ_STSO register

1.4.4.2.1.75RX FQ_DC_START ADD3

RX FIFO Queue 3 Data Container Start Address

This register is accessible in write mode if the RX FIFO Queue 3 is not busy, see BUSY flag in

RX_ FQ_STS50 register.

This register is protected by a register bank CRC defined in CRC REG register. This register is used
only in Continuous Mode

Address | ;. 50000474 Initial Value: 0x00000000
Offset:

@ N
[V

26
25
24
23
20
19
18
17
16

o < o of o o
O J 9 N O Q4 o off N o 6 o 8 of — 9

22
21

— O O
M o N

Bit

VAL

Mode

RW

Initial

Value

Bit 31:0 Define the Data Container Start Address in system memory. This bit field
is relevant only when the MH is configured in Continuous Mode. The
VAL[1:0] bits are always assumed to be 0b0OO whatever the value written.
This address value must always be word aligned (32bit). This register is
only accessible in write mode if the RX FIFO Queue 3 is not busy, see
BUSY flag in RX_FQ_STSO register

0x0

1.4.4.2.1.76RX FQ_RD_ADD _PT3

RX FIFO Queue 3 Read Address Pointer
This register is used only in Continuous Mode.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN

I
67 | 306

Address

Offset: 0x00000478

Initial Value:

0x00000000

o O N
N NN

26
25
24
23
22

- 9
[S2/IeD

21

20
19
18
17
16

LO|
—

<
~

)
—

o
—

(e
—

N~

|

LO|

<

(82

Bit

VAL

Mode

RW

Initial
Value

0x0

Bit 31:0

The SW uses this register to indicate the Data Read Address of the RX

message being read to the MH. This address must point to the last word
of the RX message considered in the data container. This bit field is
relevant only when the MH is configured in Continuous mode. The MH
uses this information to ensure enough memory space is available to
write the next message. For an initial start, it is mandatory to set
VAL[1:0] to Ob11, to avoid RX_FQ_RD_ADD_PT3 register to be equal to
the RX_ FQ _START ADDRS3 registers. Excepted for the initial value, the
address value must always be word aligned (32bit), VAL[1:0] must be set

to Ob0O.

1.4.4.2.1.77RX FQ ADD PT4
RX FIFO Queue 4 Current Address Pointer

Address
Offset: 0x00000480

Initial Value:

0x00000000

o O N
N NN

26
25
24
23
22

- 9
[S2/IeY

21

20
19
18
17
16

LO|
—

<
|

o)
—

o
—

e
—

~

e

LO|

<

(82

Bit

VAL

Mode

Initial
Value

0x0

Bit 31:0

Provide the current RX Header Descriptor address pointer for the RX

FIFO Queue 4 in the system memory. To follow RX descriptor over time,

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 68 | 306

refer to the RX_DESC _ADD _ PT register. This address value is always word
aligned (32bit).

1.4.4.2.1.78RX FQ_START ADD4

RX FIFO Queue 4 link list Start Address

This register is only accessible in write mode if the RX FIFO Queue 4 is not busy, see BUSY flag in
RX_ FQ_STS50 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address | 0x00000484 Initial Value: ~ 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o0 < 9 N
— | |

10
9
8
7
6
5
4
3
2
1
[0]

—
—

21

—|
[S2/IeY

Bit

VAL

Mode

RW

Initial

Value

Bit 31:0 Define the start address of the RX FIFO Queue link list descriptor in
system memory. The VAL[1:0] bits are always assumed to be 0bOO
whatever the value written. This address value must always be word
aligned (32bit). This register is only accessible in write mode if the RX
FIFO Queue 4 is not busy, see BUSY flag in RX_FQ_STSO register

0x0

1.4.4.2.1.79RX FQ_SIZE4

RX FIFO Queue 4 link list and data container Size

This register is only accessible in write mode if the RX FIFO Queue 4 is not busy, see BUSY flag in
RX_ FQ_STS50 register.

This register is protected by a register bank CRC defined in CRC REG register.

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 69 | 306
Address | 00000488 Initial Value: 0x00000000
Offset:
Bit ? S,
e s
Mode 2 z
Initial S S
Value ° °
Bit 9:0 Define the maximum number of descriptors in the RX FIFO Queue link

list. It is important to note that MAX DESC = O does not prevent the RX
FIFO Queue to be enabled and started. An active and running RX FIFO
Queue with MAX_DESC = 0 is not allowed and will result in a DESC_ERR
interrupt if no RX descriptor is defined. The size to be allocated to the
link list must be equal to MAX DESC * 16bytes for MAX_DESC >= 1. This
register is only accessible in write mode if the RX FIFO Queue 4 is not
busy, see BUSY flag in RX_FQ_STSO register

Bit 27:16 In Normal mode only the DC_SIZE[6:0] is used to define the maximum
size of an RX data container for the RX FIFO Queue. The data container
size is DC_SIZE[6:0] * 32bytes and one is attached to every RX
descriptor. In continuous mode, it defines the size of the single data
container used to write all RX messages. The overall data container size
is DC_SIZE[11:0] * 32bytes for MAX DESC > = 1. When set to 0, the RX
FIFO Queue can be enabled but not started. This register is only
accessible in write mode if the RX FIFO Queue 4 is not busy, see BUSY
flag in RX_FQ_STSO register

7.4.4.2.1.80RX FQ_DC_START ADD4

RX FIFO Queue 4 Data Container Start Address

This register is accessible in write mode if the RX FIFO Queue 4 is not busy, see BUSY flag in

RX FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register. This register is used
only in Continuous Mode

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 70 | 306

Address

0x0000048c Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o < o o o
Y 2 Y8 9 3 o o N 9 o S oo A g

21

—|
[S2/IeD

Bit

VAL

Mode

RW

Initial
Value

0x0

Bit 31:0 Define the Data Container Start Address in system memory. This bit field
is relevant only when the MH is configured in Continuous Mode. The
VAL[1:0] bits are always assumed to be 0b0OO whatever the value written.
This address value must always be word aligned (32bit). This register is
only accessible in write mode if the RX FIFO Queue 4 is not busy, see
BUSY flag in RX_FQ_STSO register

1.4.4.2.1.87TRX FQ RD ADD PT4
RX FIFO Queue 4 Read Address Pointer

This register is used only in Continuous Mode.

Address | 50000490 Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o 8 o o - 9
9 3 9 9 09 of o N 9 1 o o 9

21

—| g
(32 INeD

Bit

VAL

Mode

RW

Initial
Value
Bit 31:0 The SW uses this register to indicate the Data Read Address of the RX
message being read to the MH. This address must point to the last word
of the RX message considered in the data container. This bit field is
relevant only when the MH is configured in Continuous mode. The MH
uses this information to ensure enough memory space is available to
write the next message. For an initial start, it is mandatory to set

0x0

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 71| 306

VAL[1:0] to Ob11, to avoid RX FQ_RD_ADD_PT4 register to be equal to
the RX_FQ_START _ADDR4 registers. Excepted for the initial value, the
address value must always be word aligned (32bit), VAL[1:0] must be set
to 0b00.

1.4.4.2.1.82RX FQ ADD _PT5
RX FIFO Queue 5 Current Address Pointer

Address |y 10000498 Initial Value: 0x00000000
Offset:

Q O o N
M N NN

26
25
24
23
22
20
19
18
17
16

o0 < M N
— | v] v

10
9
8
7
6
5

< o N v g

21

—
e

Bit

VAL

Mode =

Initial
Value

0x0

Bit 31:0 Provide the current RX Header Descriptor address pointer for the RX
FIFO Queue 5 in the system memory. To follow RX descriptor over time,
refer to the RX_ DESC_ADD _PT register. This address value is always word
aligned (32bit).

1.4.4.2.1.83RX FQ_START ADD5

RX FIFO Queue 5 link list Start Address

This register is only accessible in write mode if the RX FIFO Queue 5 is not busy, see BUSY flag in
RX FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC REG register.

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN

I
72 | 306

Address
Offset:

0x0000049c

Initial Value:

0x00000000

— O O oo N
M M NN N

26
25
24
23
22
21

20
19
18
17
16

[To I ISP IS
— | |

(e
—

N Y 0 < M

Bit

VAL

Mode

RW

Initial
Value

0x0

Bit 31:0

Define the start address of the RX FIFO Queue link list descriptor in
system memory. The VAL[1:0] bits are always assumed to be 0bOO
whatever the value written. This address value must always be word
aligned (32bit). This register is only accessible in write mode if the RX
FIFO Queue 5 is not busy, see BUSY flag in RX_ FQ_STSO register

1.4.4.2.1.84RX FQ _SIZES

RX FIFO Queue 5 link list and data container Size

This register is only accessible in write mode if the RX FIFO Queue 5 is not busy, see BUSY flag in
RX FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC REG register.

Address
Offset:

0x000004a0

Initial Value:

0x00000000

— O O oo N
M M NN N

26
25
24
23
22
21

20
19
18
17
16

o0 < M
— | |

|
—

e
—

N O o < M

Bit

DC_SIZE

MAX_DESC

Mode

RW

Initial
Value

0x0

0x0

Bit 9:0

Define the maximum number of descriptors in the RX FIFO Queue link
list. It is important to note that MAX_DESC = 0 does not prevent the RX
FIFO Queue to be enabled and started. An active and running RX FIFO
Queue with MAX_DESC = 0 is not allowed and will result in a DESC_ERR
interrupt if no RX descriptor is defined. The size to be allocated to the

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 73 | 306

link list must be equal to MAX_DESC * 16bytes for MAX DESC >= 1. This
register is only accessible in write mode if the RX FIFO Queue 5 is not
busy, see BUSY flag in RX_FQ_STSO register

Bit 27:16 In Normal mode only the DC_SIZE[6:0] is used to define the maximum
size of an RX data container for the RX FIFO Queue. The data container
size is DC_SIZE[6:0] * 32bytes and one is attached to every RX
descriptor. In continuous mode, it defines the size of the single data
container used to write all RX messages. The overall data container size
is DC_SIZE[11:0] * 32bytes for MAX DESC > = 1. When set to 0, the RX
FIFO Queue can be enabled but not started. This register is only
accessible in write mode if the RX FIFO Queue 5 is not busy, see BUSY
flag in RX_FQ_STSO register

1.4.4.2.1.85RX FQ DC_START ADD5

RX FIFO Queue 5 Data Container Start Address

This register is accessible in write mode if the RX FIFO Queue 5 is not busy, see BUSY flag in

RX_ FQ_STS50 register.

This register is protected by a register bank CRC defined in CRC REG register. This register is used
only in Continuous Mode

Address |5 50000424 Initial Value: 0x00000000
Offset:

@ N
[V

26
25
24
23
20
19
18
17
16

o < o of o o
O J 9 N O Q4 o off N o 6 o 8 of — 9

22
21

— O O
M o N

Bit

VAL

Mode

RW

Initial

Value

Bit 31:0 Define the Data Container Start Address in system memory. This bit field
is relevant only when the MH is configured in Continuous Mode. The
VAL[1:0] bits are always assumed to be 0b0O0O whatever the value written.
This address value must always be word aligned (32bit). This register is
only accessible in write mode if the RX FIFO Queue 5 is not busy, see
BUSY flag in RX_FQ_STSO register

0x0

1.4.4.2.1.86RX FQ_RD_ADD PT5

RX FIFO Queue 5 Read Address Pointer
This register is used only in Continuous Mode.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN

I
74 | 306

Address

Offset: 0x000004a8

Initial Value:

0x00000000

o O N
N NN

26
25
24
23
22

—|
[S2/IeD

21

20
19
18
17
16

LO|
—

<
~

)
—

o
—

(e
—

N

|

LO|

<

(82

Bit

VAL

Mode

RW

Initial
Value

0x0

Bit 31:0

The SW uses this register to indicate the Data Read Address of the RX

message being read to the MH. This address must point to the last word
of the RX message considered in the data container. This bit field is
relevant only when the MH is configured in Continuous mode. The MH
uses this information to ensure enough memory space is available to
write the next message. For an initial start, it is mandatory to set
VAL[1:0] to Ob11, to avoid RX_FQ_RD_ADD_PT5 register to be equal to
the RX_FQ_START ADDR5 registers. Excepted for the initial value, the
address value must always be word aligned (32bit), VAL[1:0] must be set

to Ob0O.

1.4.4.2.1.87RX FQ ADD PT6
RX FIFO Queue 6 Current Address Pointer

Address
Offset: 0x000004b0

Initial Value:

0x00000000

o O N W
N NN

25
24
23
22

| 9
[S2/IeY

21

20
19
18
17
16

LO|
—

<
|

o)
—

o
—

e
—

~

e

LO|

<

(82

Bit

VAL

Mode

Initial
Value

0x0

Bit 31:0

Provide the current RX Header Descriptor address pointer for the RX

FIFO Queue 6 in the system memory. To follow RX descriptor over time,

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 75 | 306

refer to the RX_ DESC_ADD PT register. This address value is always word
aligned (32bit).

1.4.4.2.1.88RX FQ START ADD6

RX FIFO Queue 6 link list Start Address

This register is only accessible in write mode if the RX FIFO Queue 6 is not busy, see BUSY flag in
RX_ FQ_STS50 register.

This register is protected by a register bank CRC defined in CRC REG register.

Address | 6x000004b4 Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o0 < 9 N
— | |

10
9
8
7
6
5
4
3
2
1
[0]

—
—

21

—|
[S2/IeY

Bit

VAL

Mode

RW

Initial

Value

Bit 31:0 Define the start address of the RX FIFO Queue link list descriptor in
system memory. The VAL[1:0] bits are always assumed to be 0bOO
whatever the value written. This address value must always be word
aligned (32bit). This register is only accessible in write mode if the RX
FIFO Queue 6 is not busy, see BUSY flag in RX_FQ_STSO register

0x0

1.4.4.2.1.89RX FQ_SIZE6

RX FIFO Queue 6 link list and data container Size

This register is only accessible in write mode if the RX FIFO Queue 6 is not busy, see BUSY flag in
RX_ FQ_STS50 register.

This register is protected by a register bank CRC defined in CRC REG register.

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 76 | 306
Address | 5 600004b8 Initial Value: 0x00000000
Offset:
Bit ? S,
e s
Mode 2 z
Initial S S
Value ° °
Bit 9:0 Define the maximum number of descriptors in the RX FIFO Queue link

list. It is important to note that MAX DESC = O does not prevent the RX
FIFO Queue to be enabled and started. An active and running RX FIFO
Queue with MAX_DESC = 0 is not allowed and will result in a DESC_ERR
interrupt if no RX descriptor is defined. The size to be allocated to the
link list must be equal to MAX DESC * 16bytes for MAX_DESC >= 1. This
register is only accessible in write mode if the RX FIFO Queue 6 is not
busy, see BUSY flag in RX_FQ_STSO register

Bit 27:16 In Normal mode only the DC_SIZE[6:0] is used to define the maximum
size of an RX data container for the RX FIFO Queue. The data container
size is DC_SIZE[6:0] * 32bytes and one is attached to every RX
descriptor. In continuous mode, it defines the size of the single data
container used to write all RX messages. The overall data container size
is DC_SIZE[11:0] * 32bytes for MAX DESC > = 1. When set to 0, the RX
FIFO Queue can be enabled but not started. This register is only
accessible in write mode if the RX FIFO Queue 6 is not busy, see BUSY
flag in RX_FQ_STSO register

7.4.4.2.1.90RX FQ_DC_START ADD6

RX FIFO Queue 6 Data Container Start Address

This register is accessible in write mode if the RX FIFO Queue 6 is not busy, see BUSY flag in

RX FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register. This register is used
only in Continuous Mode

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 77 | 306

Address

0x000004bc Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o < o o o
Y 2 Y8 9 3 o o N 9 o S oo A g

21

—|
[S2/IeD

Bit

VAL

Mode

RW

Initial

Value

Bit 31:0 Define the Data Container Start Address in system memory. This bit field
is relevant only when the MH is configured in Continuous Mode. The
VAL[1:0] bits are always assumed to be 0b0O0O whatever the value written.
This address value must always be word aligned (32bit). This register is
only accessible in write mode if the RX FIFO Queue 6 is not busy, see
BUSY flag in RX_FQ_STSO register

0x0

1.4.4.2.1.91RX FQ_RD_ADD PT6
RX FIFO Queue 6 Read Address Pointer

This register is used only in Continuous Mode.

Address |) 500004c0 Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o 8 o o - 9
9 3 9 9 09 of o N 9 1 o o 9

21

—| g
(32 INeD

Bit

VAL

Mode

RW

Initial
Value
Bit 31:0 The SW uses this register to indicate the Data Read Address of the RX
message being read to the MH. This address must point to the last word
of the RX message considered in the data container. This bit field is
relevant only when the MH is configured in Continuous mode. The MH
uses this information to ensure enough memory space is available to
write the next message. For an initial start, it is mandatory to set

0x0

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 78 | 306

VAL[1:0] to Ob11, to avoid RX FQ_RD_ADD_PT6 register to be equal to
the RX_FQ _START _ADDRG6 registers. Excepted for the initial value, the
address value must always be word aligned (32bit), VAL[1:0] must be set
to 0b00.

1.4.4.2.1.92RX FQ ADD PT7
RX FIFO Queue 7 Current Address Pointer

Address | 5x000004c8 Initial Value: ~ 0x00000000
Offset:

Q O o N
M N NN

26
25
24
23
22
20
19
18
17
16

o0 < M N
— | v] v

10
9
8
7
6
5

< o N v g

21

—
e

Bit

VAL

Mode =

Initial
Value

0x0

Bit 31:0 Provide the current RX Header Descriptor address pointer for the RX
FIFO Queue 7 in the system memory. To follow RX descriptor over time,
refer to the RX_ DESC_ADD PT register. This address value is always word
aligned (32bit).

1.4.4.2.1.93RX FQ_START ADD7

RX FIFO Queue 7 link list Start Address

This register is only accessible in write mode if the RX FIFO Queue 7 is not busy, see BUSY flag in
RX FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC REG register.

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN

I
79 | 306

Address
Offset:

0x000004cc

Initial Value:

0x00000000

— O O oo N
M M NN N

26
25
24
23
22
21

20
19
18
17
16

[To I ISP IS
— | |

(e
—

N Y 0 < M

Bit

VAL

Mode

RW

Initial
Value

0x0

Bit 31:0

Define the start address of the RX FIFO Queue link list descriptor in
system memory. The VAL[1:0] bits are always assumed to be 0bOO
whatever the value written. This address value must always be word
aligned (32bit). This register is only accessible in write mode if the RX
FIFO Queue 7 is not busy, see BUSY flag in RX_ FQ_STSO register

1.4.4.2.1.94RX FQ _SIZE7

RX FIFO Queue 7 link list and data container Size

This register is only accessible in write mode if the RX FIFO Queue 7 is not busy, see BUSY flag in
RX FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC REG register.

Address
Offset:

0x000004d0

Initial Value:

0x00000000

— O O oo N
M M NN N

|
N

25
24
23
22
21

20
19
18
17
16

o0 < M
— | |

|
—

e
—

N O o < M

Bit

DC_SIZE

MAX_DESC

Mode

RW

Initial
Value

0x0

0x0

Bit 9:0

Define the maximum number of descriptors in the RX FIFO Queue link
list. It is important to note that MAX_DESC = 0 does not prevent the RX
FIFO Queue to be enabled and started. An active and running RX FIFO
Queue with MAX_DESC = 0 is not allowed and will result in a DESC_ERR
interrupt if no RX descriptor is defined. The size to be allocated to the

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 80 | 306

link list must be equal to MAX_DESC * 16bytes for MAX DESC >= 1. This
register is only accessible in write mode if the RX FIFO Queue 7 is not
busy, see BUSY flag in RX_FQ_STSO register

Bit 27:16 In Normal mode only the DC_SIZE[6:0] is used to define the maximum
size of an RX data container for the RX FIFO Queue. The data container
size is DC_SIZE[6:0] * 32bytes and one is attached to every RX
descriptor. In continuous mode, it defines the size of the single data
container used to write all RX messages. The overall data container size
is DC_SIZE[11:0] * 32bytes for MAX DESC > = 1. When set to O, the RX
FIFO Queue can be enabled but not started. This register is only
accessible in write mode if the RX FIFO Queue 7 is not busy, see BUSY
flag in RX_FQ_STSO register

1.4.4.2.1.95RX FQ DC_START ADD7

RX FIFO Queue 7 Data Container Start Address

This register is accessible in write mode if the RX FIFO Queue 7 is not busy, see BUSY flag in

RX_ FQ_STS50 register.

This register is protected by a register bank CRC defined in CRC REG register. This register is used
only in Continuous Mode

Address | ,00004d4 Initial Value: 0x00000000
Offset:

o N Y
N NN

25
24
23
20
19
18
17
16

o < o of o o
O J 9 N O Q4 o off N o 6 o 8 of — 9

22
21

— O O
M o N

Bit

VAL

Mode

RW

Initial

Value

Bit 31:0 Define the Data Container Start Address in system memory. This bit field
is relevant only when the MH is configured in Continuous Mode. The
VAL[1:0] bits are always assumed to be 0b0OO whatever the value written.
This address value must always be word aligned (32bit). This register is
only accessible in write mode if the RX FIFO Queue 7 is not busy, see
BUSY flag in RX_FQ_STSO register

0x0

1.4.4.2.1.96RX FQ_RD_ADD PT7

RX FIFO Queue 7 Read Address Pointer
This register is used only in Continuous Mode.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 81| 306
Address | 6x000004d8 Initial Value: ~ 0x00000000
Offset:

VAL

Bit

RW

Mode

Initial

Value

Bit 31:0 The SW uses this register to indicate the Data Read Address of the RX
message being read to the MH. This address must point to the last word
of the RX message considered in the data container. This bit field is
relevant only when the MH is configured in Continuous mode. The MH
uses this information to ensure enough memory space is available to
write the next message. For an initial start, it is mandatory to set
VAL[1:0] to Ob11, to avoid RX_FQ_RD_ADD_PT7 register to be equal to
the RX_FQ_START _ADDR7 register. Excepted for the initial value, the
address value must always be word aligned (32bit), VAL[1:0] must be set
to 0b0O.

0x0

1.4.4.2.1.97TX FILTER CTRLO

TX Filter Control register O

This register is only accessible in write mode if the MH is not busy, see BUSY flag in MH_STS register.
The register is accessible in write access in privileged mode only. This register is protected by a
register bank CRC defined in CRC REG register.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

AL 82 | 306
Address .
Offset: 0x00000600 Initial Value: 0x00000000
392389999999 Y9d9 9090 o oo
E <Z(E u N4 m
Bit 43328 2 =
Q_: o Y = = (@]
Mode 2333 3 = z
Initial ddddd o O
Value 33 333 E 2

Bit 7:0 When COMB[n] =1 the comparison attached to the reference values
(REF_VALO and REF VAL1) or (REF_VAL2 and REF VAL3) are required to
accept a TX message. This bit field register is only accessible in write
mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 15:8 When MASK[n] =1 the reference values REF_VALO/1 or REF_VAL2/3 are
combined to define a value (REF_VALO or REF _VAL2) and a mask
(REF_VAL1 or REF_VAL3). Otherwise, the comparison uses the
REF_VALO/1/2/3 bit field as reference value only. This bit field register is
only accessible in write mode if the MH is not busy, see BUSY flag in
MH_STS register

Bit 16 When set to 1 accept on match, otherwise reject on match. This bit field
register is only accessible in write mode if the MH is not busy, see BUSY
flag in MH_STS register

Bit 17 When set to 1 reject CAN-FD messages, otherwise accept them. This bit
field register is only accessible in write mode if the MH is not busy, see
BUSY flag in MH_STS register

Bit 18 When set to 1 reject Classic CAN messages, otherwise accept them. This
bit field register is only accessible in write mode if the MH is not busy,
see BUSY flag in MH_STS register

Bit 19 When set to 1, enable the TX filter for all TX message to be sent. This bit
field register is only accessible in write mode if the MH is not busy, see
BUSY flag in MH_STS register

Bit 20 When set to 1, enable the interrupt tx filter_irqg to be triggered. The
interrupt is triggered when a message is rejected. This bit field register is
only accessible in write mode if the MH is not busy, see BUSY flag in
MH_STS register

1.4.4.2.7.98TX FILTER CTRL17
TX Filter Control register 1

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 83 | 306

This register is only accessible in write mode if the MH is not busy, see BUSY flag in MH_STS register.
The register is accessible in write access in privileged mode only. This register is protected by a
register bank CRC defined in CRC REG register.

Address | 50000604 Initial Value: 0x00000000
Offset:

Bit

Mode z z

Value ° -

Bit 15:0 When VALID[n] = 1 the reference value defined for the TX filter n is valid.
This bit field register is only accessible in write mode if the MH is not
busy, see BUSY flag in MH_STS register. The valid reference value used is
defined as follow:

VALID[n] is assigned to TX_FILTER_REFVALO.REF VAL{n} (n € {0, 1, 2, 3})

VALID[n+4] is assigned to TX_FILTER_REFVAL1.REF _VAL{n} (n € {0, 1, 2, 3})

VALID[n+8] is assigned to TX_FILTER_REFVAL2.REF _VAL{n} (n € {0, 1, 2, 3})

VALID[n+12] is assigned to TX_FILTER_REFVAL3.REF_VAL{n} (n € {0, 1, 2, 3})

Bit 31:16 When FIELD[n] = 1 the TX filter element n is considering SDT, otherwise
VCID, to compare with the reference value defined in
TX_FILTER_REFVALO/1/2/3. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register. The
reference value to be set is defined as follow:

FIELD[n] is assigned to TX_FILTER_REFVALO.REF VAL{n} (n € {O, 1, 2, 3})

FIELD[n+4] is assigned to TX_FILTER_REFVAL1.REF _VAL{n} (n € {0, 1, 2, 3})

FIELD[n+8] is assigned to TX_FILTER_REFVAL2.REF VAL{n} (n € {0, 1, 2, 3})

FIELD[n+12] is assigned to TX_FILTER_REFVAL3.REF VAL{n} (n € {0, 1, 2, 3})

1.4.4.2.1.99TX FILTER REFVALO

TX Filter Reference Value register O

This register is only accessible in write mode if the MH is not busy, see BUSY flag in MH_STS register.
The register is accessible in write access in privileged mode only. This register is protected by a
register bank CRC defined in CRC REG register.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 84 | 306
Address | 60000608 Initial Value: 0x00000000
Offset:
Bit g g s
Mode Z Z Z =z
Initial < < < S
Value ° ° ° °
Bit 7:0 Define the reference value 0. This bit field register is only accessible in

write mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 15:8 Define the reference value 1. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 23:16 Define the reference value 2. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 31:24 Define the reference value 3. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

1.4.4.2.1.700 TX FILTER REFVALT

TX Filter Reference Value register 1

This register is only accessible in write mode if the MH is not busy, see BUSY flag in MH_STS register.
The register is accessible in write access in privileged mode only. This register is protected by a
register bank CRC defined in CRC REG register.

Address |4, 0000060c Initial Value: 0x00000000

Offset:

Mode = = = =

Initial < < < S

Value ° ° ° °©

Bit 7:0 Define the reference value 0. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 85 | 306

Bit 15:8 Define the reference value 1. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 23:16 Define the reference value 2. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 31:24 Define the reference value 3. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

1.4.4.2.1.707 TX FILTER REFVALZ2

TX Filter Reference Value register 2

This register is only accessible in write mode if the MH is not busy, see BUSY flag in MH_STS register.
The register is accessible in write access in privileged mode only. This register is protected by a
register bank CRC defined in CRC _REG register.

Address | 60000610 Initial Value: 0x00000000
Offset:

Mode = = = =

Initial < < < S

Value °c ° ° °

Bit 7:0 Define the reference value 0. This bit field register is only accessible in

write mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 15:8 Define the reference value 1. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 23:16 Define the reference value 2. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 31:24 Define the reference value 3. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

1.4.4.2.1.7102 TX FILTER_REFVAL3

TX Filter Reference Value register 3

This register is only accessible in write mode if the MH is not busy, see BUSY flag in MH_STS register.
The register is accessible in write access in privileged mode only. This register is protected by a
register bank CRC defined in CRC REG register.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 86 | 306
Address | 60000614 Initial Value: 0x00000000
Offset:
Bit §I §| §| §I
Mode Z Z Z =z
Initial < < < S
Value ° ° ° °
Bit 7:0 Define the reference value 0. This bit field register is only accessible in

write mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 15:8 Define the reference value 1. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 23:16 Define the reference value 2. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 31:24 Define the reference value 3. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

1.4.4.2.1.7103 RX_FILTER CTRL

RX Filter Control register

This register is only accessible in write mode if the MH is not busy, see BUSY flag in MH_STS register.
The register is accessible in write access in privileged mode only. This register is protected by a
register bank CRC defined in CRC REG register.

Address |5 50000680 Initial Value: 0x00000000
Offset:
a
. L LEL E| § &
Bit 2 2 = & 2
< =
Mode == 2 2 z
Initial g 9 2 2 2
Value A ° ° °
Bit 7:0 Define the number of RX filter elements that are defined in the local
memory. When set to 0, all RX messages are accepted and stored in the
Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 87 | 306

RX FIFO Queue number defined by ANMF_FQ[3:0]. This bit field register
is only accessible in write mode if the MH is not busy, see BUSY flag in
MH_STS register

Bit 12:8 THRESHOLD defines the latest point in time to wait for the result of the
RX filtering process., Once this limit is reached, the MH starts fetching an
RX descriptor from S_ MEM. THRESHOLD value is only used when greater
than O and ANFF bit set to 1. See chapter "RX Filter" for an explanation
how to configure THRESHOLD. When the RX filtering is not providing the
result before the threshold of the RX DMA FIFO is reached, the RX
message is sent to the default RX FIFO Queue mentioned in the
ANMF_FQ[2:0] (only enabled when ANFF set to 1). When the level is over
the threshold and the RX filtering result is already known, no action is
taken. Threshold is given in number of word of 32bit. This bit field
register is only accessible in write mode if the MH is not busy, see BUSY
flag in MH_STS register

Bit 18:16 Define the default RX FIFO Queue number (from O to 7) when non
matching frames are accepted (ANMF = 1) AND/OR when the threshold
mechanism is active (ANFF = 1). This bit field register is only accessible
in write mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 20 When set to 1, non matching frames are accepted, otherwise rejected. It
is mandatory to have the default RX FIFO Queue defined in the
ANMF_FQ[2:0] bit field, enabled and started (see RX FQ _CTRL2 and
RX_FQ_CTRLO registers). This bit field register is only accessible in write
mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 21 When set to 1, frames not filtered in time and over the DMA RX FIFO
level defined in THRESHOLDI[4:0], are routed to the default RX FIFO
Queue (defined by the ANMF_FQ[2:0] bit field). It is mandatory to have
the default RX FIFO Queue defined in the ANMF_FQ[2:0] bit field,
enabled and started (see RX FQ CTRL2 and RX _FQ_CTRLO registers).
This bit field register is only accessible in write mode if the MH is not
busy, see BUSY flag in MH_STS register

1.4.4.2.1.104 TX FQ INT STS
TX FIFO Queue Interrupt Status register

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 88 | 306
Address | 6x00000700 Initial Value: ~ 0x00000000
Offset:
a =
Bit < E
Mode z -
Initial ° S
Value ° -

Bit 7:0 When SENT[n] = 1, a TX message was sent from the TX FIFO Queue n and
writing a 1 clears the bit

Bit 23:16 When TX FIFO Queue n loads a TX descriptor with VALID = O, the bit
UNVALID[n] will be set. Writing 1 to UNVALID[n] clears the bit.

1.4.4.2.1.105 RX FQ_INT_STS
RX FIFO Queue Interrupt Status register

Address | ;. 50000704 Initial Value: 0x00000000
Offset:
. 2
Bit S 5
Mode = :
Value ° i

Bit 7:0 When RECEIVED[n] = 1, an RX message was received in the RX FIFO
Queue n, writing a 1 clears the bit

Bit 23:16 When RX FIFO Queue n loads an RX descriptor with VALID=0, the bit
UNVALID[n] will be set. Writing 1 to UNVALID[n] clears the bit.

1.4.4.2.1.106 TX PQ_INT STSO
TX Priority Queue Interrupt Status register O

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 89 | 306

Address

0x00000708 Initial Value: 0x00000000
Offset:

o O N
N NN

26
25
24
23
22
20
19
18
17
16

o < o o o
Y 2 Y8 9 3 o o N 9 o S oo A g

21

—|
[S2/IeD

Bit

SENT

Mode

RW

Initial
Value

Bit 31:0 When SENT[n] = 1 TX message was sent from the TX Priority Queue slot
n, writing a 1 clears the bit

0x0

1.4.4.2.1.7107 TX PQ_INT_STS1

TX Priority Queue Interrupt Status register 1

Address | . 6000070c Initial Value: 0x00000000
Offset:

@ N
[V

26
25
24
23
20
19
18
17
16

o < o o - o
O J 9 N O Q4 o off N o 6 < o of — 9

22
21

— O O
M o N

Bit

UNVALID

Mode

RW

Initial

Value

Bit 31:0 When UNVALID[n] = 1, an invalid RX descriptor is detected while running
the TX Priority Queue slot n. Writing a 1 clears the bit. When set to 1,
the TX Priority Queue slot n is on hold, waiting for the SW to react. As
the TX message is fully defined in system memory before starting the
relevant slot, there should not be any invalid TX descriptor interrupts

0x0

1.4.4.2.1.108 STATS INT STS

Statistics Interrupt Status register

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 90 | 306
Address | 4,00000710 Initial Value: 0x00000000
Offset:

[O
939 9
Bit 2329
Mode =
Initial ddd g
Value 999
Bit O Counter of TX message transmitted successfully has wrapped, writing a 1
clears the bit
Bit 1 Counter of TX message transmitted unsuccessfully has wrapped, writing
a 1 clears the bit
Bit 2 Counter of RX message received successfully has wrapped, writing a 1
clears the bit
Bit 3 Counter of RX message received unsuccessfully has wrapped, writing a 1

clears the bit

1.4.4.2.1.709 ERR_INT_STS

Error Interrupt Status register

Address | 60000714 Initial Value: 0x00000000
Offset:
. d4 8¢
Bit IR I T
R ENSRES
= A
s q
Mode EEEE
Initial ddddd
Value [@ [@ (@ o g
Bit O When set to 1, a TX acknowledge data overflow is detected, writing a 1
clears the bit

Bit 1 When set to 1, an RX DMA FIFO overflow issue is detected, writing a 1

clears the bit

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN

Bit 2

Bit 3
Bit 4

91 | 306

When set to 1, an RX acknowledge data overflow is detected, writing a 1
clears the bit
When set to 1, a TX sequence issue is detected, writing a 1 clears the bit

When set to 1, an RX sequence issue is detected, writing a 1 clears the
bit

1.4.4.2.1.110 SFTY INT STS
Safety Interrupt Status register

Address | () 00000718 Initial Value: 0x00000000
Offset:
. dad S8 dEgalE|d e
Bit S39dddddEqEEE|gEE
EEEEEEEEEE IR
g 9 AR ANy E|yaE R

Mode Z227z22273:22382227%%

Initial odddddddadddaddddddddd o

Value 533338333383 3333333 3

Bit O When set to 1, an AXI| write access timeout issue is detected on DMA
interface, writing a 1 clears the bit

Bit 1 When set to 1, an AXI read access timeout issue is detected on DMA
interface, writing a 1 clears the bit

Bit 2 When set to 1, a TX_MSG timeout issue is detected, writing a 1 clears the
bit

Bit 3 When set to 1, an RX_MSG timeout issue is detected, writing a 1 clears
the bit

Bit 4 When set to 1, an AXI write access timeout issue is detected on local
memory interface, writing a 1 clears the bit

Bit 5 When set to 1, an AX| read access timeout issue is detected on local
memory interface, writing a 1 clears the bit

Bit 6 When set to 1, a TX data parity error is detected on datapath, writing a 1
clears the bit

Bit 7 When set to 1, an RX data parity error is detected on datapath, writing a
1 clears the bit

Bit 8 When set to 1, a TX address pointer parity issue is detected, writing a 1
clears the bit

Bit 9 When set to 1, an RX address pointer parity issue is detected, writing a 1

clears the bit

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 92 | 306

Bit 10 When set to 1, a TX descriptor fetched does not match the one expected,
writing a 1 clears the bit

Bit 11 When set to 1, a TX descriptor has a wrong CRC, writing a 1 clears the
bit

Bit 12 When set to 1, an RX descriptor fetched does not match the one
expected, writing a 1 clears the bit

Bit 13 When set to 1, an RX descriptor has a wrong CRC, writing a 1 clears the
bit

Bit 14 When set to 1, an uncorrectable error is detected on the local memory
interface

Bit 15 When set to 1, a correctable error is detected on the local memory
interface

Bit 16 When set to 1, an acknowledge data parity issue is detected on the TX
path

Bit 17 When set to 1, an acknowledge data parity issue is detected on the RX
path

1.4.4.2.1.111 AX|ERR INFO

DMA Error Information

Address | 6000071c¢ Initial Value: 0x00000000
Offset:

2 o & o
B|t «, EI x <

E s %‘ 2
Mode o o o« o
Initial o o S S
Value ° ° ° °
Bit 1:0 On DMA_AXI interface. Define the AXI ID used when a write or read error

response is detected. According to the value, the DMA channel can be
identified and so it is possible to define what's the effect of such issue.

Bit 3:2 On DMA_AXI interface. When set to Ob10, the AXI response is SLVERR.
When set to Ob11, the response is DECERR. By default, set to 0b0O
(OKAY)

Bit 5:4 On MEM_AXI interface. Define the AXI ID used when a write or read error
response is detected. According to the value, the DMA channel can be
identified and so it is possible to define what's the effect of such issue.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 93 | 306

Bit 7:6 On MEM_AXI interface. When set to Ob10, the AXI response is SLVERR.
When set to Ob11, the response is DECERR. By default, set to 0b00O
(OKAY)

1.4.4.2.1.172 DESC_ERR INFOO

Descriptor Error Information O

If the DESC_ERR_INFOO.ADD[317:16] = 0 and DESC ERR_INFO1.CRC[8:0], DESC ERR INFO1.RX TX
and DESC ERR _INFO1.RC[4:0] are all equal to O, the faulty descriptor is a TX descriptor fetched from
L MEM
Address
Offset:

0x00000720 Initial Value: 0x00000000

o < o o | 9
DY AN O of o N 9 19 < o of o g

Q O O N
M N NN

26
25
24
23
22

20
19
18
17
16

21

—
e

Bit

ADD

Mode =

Initial
Value

0x0

Bit 31:0 Descriptor address being used when the error is detected

1.4.4.2.1.113 DESC ERR INFO1

Descriptor Error Information 1

When the DESC ERR INFO1.CRC[8:0], DESC ERR INFO1.RX TX and DESC ERR INFO1.RC[4:0] are all
equal to 0, the faulty descriptor is a TX descriptor fetched from L MEM only if the

DESC ERR INFOO.ADD[31:16] = 0

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

94 | 306

1.4.4.2.1.1714 TX FILTER ERR_INFO

TX Filter Error Information

NS A T—S-S-S--...
X_CAN

Address |, 00000724 Initial Value: 0x00000000

Offset:

Bit g . e |g = g

i

Mode 2 o < o 2

Initial o 9 o d o S

Value & 8 & g & &

Bit 4:0 Provide the information regarding the RX/TX FIFO Queue number or the
TX Priority Queue slot having an issue

Bit 7:5 Provide the instance number defined in RX or TX descriptor logged in

Bit 8 Identify which TX queue is impacted, either the TX Priority Queue (PQ set
to 1) or the TX FIFO Queues

Bit 13:9 Provide the information regarding the Rolling Counter defined in RX or TX
descriptor impacted

Bit 15 RX descriptor has an issue (RX_TX set to 1), otherwise the same for a TX
descriptor

Bit 24:16 CRC value defined in the RX or TX descriptor logged in

Address
Offset:

0x00000728

Initial Value:

0x00000000

—
™)

(&
[

o
N

0l
N

~
N

26
25

24
23
22

20
19
18
17
16

LO|
—

21

<
|

)
—

o
—

o
2 o o N

e

LO|

<

(82

Bit

FQN_PQS

FQ

Mode

Initial
Value

0x0

0x0

Bit O

When set to 1,

one of the TX FIFO Queues has triggered the
TX_FILTER_ERR interrupt, otherwise it is a TX Priority Queue slot

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 95 | 306

Bit 5:1 Provide the information of the TX FIFO Queue number or TX Priority
Queue slot number which has triggered the TX_FILTER_ERR interrupt.

1.4.4.2.1.115 DEBUG TEST CTRL

Debug Control register

This register is only accessible in write mode if the Test Mode Key sequence has been performed prior
to write. The register is accessible in write access in privileged mode only.

This register is protected by a register bank CRC defined in CRC_REG register.

Address | 00000800 Initial Value: 0x00000000
Offset:

Bit g : %
Mode 2 =lE
Initial S g g
Value ° 9 9
Bit O When writing 1, enable the control of the interrupt lines using the

INT_TESTO and INT_TEST1 registers. This bit field register is only
accessible in write mode if the Test Mode Key sequence has been
performed prior to write.

Bit 1 When writing 1, enable the hardware debug port to monitor MH internal
signals. This bit field register is only accessible in write mode if the Test
Mode Key sequence has been performed prior to write.

Bit 10:8 Define the set of signals to be monitored on the HDP[15:0] bus signal
interface. This bit field register is only accessible in write mode if the
Test Mode Key sequence has been performed prior to write.

1.4.4.2.1.116 INT_TESTO

Interrupt Test register O
This register is only accessible in write mode if the TEST IRQ_EN bit in DEBUG TEST CTRL is set

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 96 | 306
Address | 0x00000804 Initial Value: 0x00000000
Offset:
o g
Bit ¢ g
Mode = 2
Initial ° S
Value ° i

Bit 7:0 When writing 1 to TX_FQ_IRQ[n], triggers the interrupt line tx_fq_irg[n],
those bits are auto-cleared. This bit field register is only accessible in
write mode if the TEST_IRQ_EN bit in DEBUG_TEST _CTRL is set

Bit 23:16 When writing 1 to RX_FQ_IRQ[n], triggers the interrupt line rx_fqg_irq[n],
those bits are auto-cleared. This bit field register is only accessible in
write mode if the TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

1.4.4.2.1.7117 INT_TESTT7

Interrupt Test register 1
This register is only accessible in write mode if the TEST IRQ _EN bit in DEBUG TEST CTRL is set

Address -

Offset 0x00000808 Initial Value: 0x00000000

H93958989Q9929599399939cqgusao-q
o o o] o

g d g2 2898 JddsoddgE .
g &g g 7 MW oo Y M 5 9o g o
= 9 Y o o H H o > w > > Wy o
Bi W g o of of O H ¢ H H o o o |
It 99 o HHJgIgHHAY Y dgod9 99 H o
B_':(Oi_lmm_l m0m<<m0'— n
><|_I—I.|_E<E<(E§§0U-’Q_EL n_D_<<UJ
'—‘f"”xxxxxmmwomm%oﬂﬁ§°‘

nc.—l—n:n:EEQC < g a9 9
Mode 2223222323222 342 3 =
Initial 9999999939393 938393 2

Bit 1:0 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

Bit 2 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 97 | 306

Bit 3 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST IRQ_EN bit in DEBUG_TEST _CTRL is set

Bit 4 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST IRQ_EN bit in DEBUG_TEST _CTRL is set

Bit 5 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST _IRQ_EN bit in DEBUG_TEST _CTRL is set

Bit 6 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST IRQ_EN bit in DEBUG_TEST CTRL is set

Bit 7 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

Bit 8 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST IRQ_EN bit in DEBUG_TEST CTRL is set

Bit 9 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST IRQ_EN bit in DEBUG_TEST _CTRL is set

Bit 10 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST IRQ_EN bit in DEBUG_TEST CTRL is set

Bit 11 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST IRQ_EN bit in DEBUG_TEST _CTRL is set

Bit 12 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST _IRQ_EN bit in DEBUG_TEST_CTRL is set

Bit 13 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST IRQ_EN bit in DEBUG_TEST CTRL is set

Bit 14 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST IRQ_EN bit in DEBUG_TEST _CTRL is set

Bit 15 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST _IRQ_EN bit in DEBUG_TEST_CTRL is set

Bit 16 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST IRQ_EN bit in DEBUG_TEST _CTRL is set

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 98 | 306

Bit 17 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST IRQ_EN bit in DEBUG_TEST _CTRL is set

Bit 18 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST IRQ_EN bit in DEBUG_TEST _CTRL is set

Bit 19 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST _IRQ_EN bit in DEBUG_TEST _CTRL is set

Bit 20 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST IRQ_EN bit in DEBUG_TEST _CTRL is set

1.4.4.2.1.118 TX SCAN_FC

TX-SCAN first candidates register

This register gives the 4 best candidates evaluated by the TX-Scan. This register gives the first and
second highest priority TX descriptor after a TX-Scan. It provides also the third and fourth candidates
during a TX-Scan, considering the first and second candidates as already defined by a previous TX-

Scan run.
Address -
0x00000810 Initial Value: 0x00000000
Offset:
HE939893J47999N99 397N qusao-q
2 S > S
Bit g] ¢ 5 S 5 S g
= g = g = g = g
g g g g
Mode [o [o [o o o
|nitial’ [e) Q| (@) (&) (@} (&) o g
Value 3 3 3 3 3 3 3 g
Bit O The first candidate evaluated by TX-Scan is either a TX Priority Queue

(when set to 1) or a TX FIFO Queue (when set to 0). This bit field is
identical to TX_SCAN_BC.FH_PQ bit register

Bit 5:1 The first candidate is coming from either the TX FIFO Queue number N
(defined by FQN in TX descriptor) or the TX Priority Queue Slot number
M (defined by the PQSN in TX descriptor). The meaning of this bit field
depends on the PQO. This bit field is identical to
TX_SCAN BC.FH_FQN_PQSN bit register

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN

Bit 8

Bit 13:9

Bit 16

Bit 21:17

Bit 24

Bit 29:25

The second candidate evaluated by TX-Scan is either a TX Priority Queue
(when set to 1) or a TX FIFO Queue (when set to 0). This bit field is
identical to TX_ SCAN_BC.SH_PQ bit register

The second candidate is coming from either the TX FIFO Queue number
N (defined by FQN in TX descriptor) or the TX Priority Queue Slot
number M (defined by the PQSN in TX descriptor). The meaning of this
bit field depends on the PQO. This bit field is identical to the
TX_SCAN_BC.SH_FQN_PQSN bit register

The third candidate evaluated by TX-Scan is either a TX Priority Queue
(when set to 1) or a TX FIFO Queue (when set to 0).

The third candidate is coming from either the TX FIFO Queue number N
(defined by FQN in TX descriptor) or the TX Priority Queue Slot number
M (defined by the PQSN in TX descriptor). The meaning of this bit field
depends on the PQ2.

The fourth candidate evaluated by TX-Scan is either a TX Priority Queue
(when set to 1) or a TX FIFO Queue (when set to 0).

The fourth candidate is coming from either the TX FIFO Queue number N
(defined by FQN in TX descriptor) or the TX Priority Queue Slot number
M (defined by the PQSN in TX descriptor). The meaning of this bit field
depends on the PQ3.

1.4.4.2.1.1719 TX_ SCAN_BC

TX-SCAN best candidates register
This register gives the first and second highest priority TX descriptor after a TX-Scan

Address |) 00000814 Initial Value: 0x00000000
Offset:

Blt IS' § % LoLl § o
Mode o« « o o « o
Initial o S 9 Q 2 =
Bit O First highest priority candidate evaluated by TX-Scan. It is either a TX

Priority Queue (when set to 1) or a TX FIFO Queue (when set to 0).
Bit 5:1 First highest priority candidate coming from either the TX FIFO Queue

number N (defined by FQN in TX descriptor) or the TX Priority Queue

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

I
99 | 306

X_CAN 100 | 306

Slot number M (defined by the PQSN in TX descriptor). The meaning of
this bit field depends on the FH_PQ.

Bit 15:6 First highest priority candidate offset in multiple of 32bytes (TX
descriptor size). This register is relevant only for the TX FIFO Queue. It
provides the index of the TX descriptor in the TX FIFO Queue which is in
use on the CAN bus. When FH_PQ = 1 it is set to O.

Bit 16 Second highest priority candidate evaluated by TX-Scan. It is either a TX
Priority Queue (when set to 1) or a TX FIFO Queue (when set to 0).

Bit 21:17 Second highest priority candidate coming from either the TX FIFO Queue
number N (defined by FQN in TX descriptor) or the TX Priority Queue
Slot number M (defined by the PQSN in TX descriptor). The meaning of
this bit field depends on the SH_PQ.

Bit 31:22 Second highest priority candidate offset in multiple of 32bytes (TX
descriptor size). This register is relevant only for the TX FIFO Queue. It
provides the index of the TX descriptor in the TX FIFO Queue which is
about to be sent on the CAN bus. When SH_PQ = 1 it is set to 0.

1.4.4.2.1.7120 TX FQ_DESC_VALID

Valid TX FIFO Queue descriptors in local memory

Address | 6x00000818 Initial Value: 0x00000000
Offset:

Bit g g

Mode - -

Initial 2 S

Value ° -

Bit 7:0 When DESC_CN _VALID[n] = 1, the current/next TX descriptor for the TX
FIFO Queue n is available in L_ MEM

Bit 23:16 When DESC _NC VALID[n] = 1, the next/current TX descriptor for the TX
FIFO Queue is available in L_ MEM

1.4.4.2.1.121 TX PQ DESC VALID

Valid TX Priority Queue descriptors in local memory

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN

I
101 | 306

local memory is valid

1.4.4.2.1.122 CRC_CTRL
CRC Control register

I e TTTTUTUTCEEESSSS——S—SSSS...,
Address | o 6000081c Initial Value: 0x00000000
Offset:
Bit 5
MOde o
Initial S
Value °
Bit 31:0 When DESC VALID[n] = 1, the TX descriptor assigned to the slot n in

Address

0x00000880 Initial Value: 0x00000000
Offset:
Bit 2
Mode z
Initial g
Value 7
Bit O Writing a 1 to this bit triggers the HW CRC check of registers. This action

can be done any time for a sanity check

1.4.4.2.1.123 CRC_REG

CRC register

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 102 | 306
Address | 0x00000884 Initial Value: 0x00000000
Offset:

Bit

VAL

Mode

RW

Initial
Value

Bit 31:0 CRC value of all the registers protected by CRC. Once done, a write to
the START bit in the CRC_CTRL register must be done

0x0

1.4.4.3 Local Memory Map (L_MEM Map)

To perform the RX filtering and the TX-SCAN, the MH requires a local memory. This local memory,
called L_MEM, is addressable through the MEM_AXI interface.
The MEM_AXI interface can address up to 64KBytes with a 32bit data bus width.

The L_MEM stores all RX filter elements and Header Descriptor for TX FIFO and Priority Queues. When
considering TX FIFO Queues, the next TX Header Descriptor are also stored in L_ MEM (used for TX-
SCAN).

1.4.4.3.1 TX Descriptors

The TX FIFO Queue descriptors are organized into the L_MEM starting at the base address defined in
TX_DESC_MEM _ADD.FQ_BASE_ADDR[15:0]. Up to 8 memory locations of size 8*32bit, are required to
hold the TX Header Descriptor of every TX FIFO Queues.

Every TX FIFO Queue, when active, has its current and next descriptor defined in the L_MEM for the
TX-SCAN process. This means, for a given TX FIFO Queue, memory space must be double the size. The
current and the next TX Header Descriptor are used for the TX-SCAN.

The TX Priority Queue descriptors are organized in the L_MEM starting at the base address defined in
TX_DESC_MEM_ADD.PQ_BASE_ADDRI[15:0]. Up to 32 memory location of size 8*32bit, is required to
hold the TX Header Descriptors of every slot. As there is only one TX message per slot, there is no
need to allocate more space.

The TX descriptor elements are organized in 32bit word and so any offset would be a multiple of 8.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN

Here below is the memory organization of the TX descriptors considering N TX FIFO Queues and M TX

Priority Queue Slots:

Memory Base Bit Field Description
Offset Name
Address
FQ _BASE_ADDR[15:0] |0x0+0x40*n Element O TX Header
0x4+0x40*n Element 1 Descriptor, see TX
0x8+0x40*n X FIFO Q Element 2: TSO descriptor, TX
0xC+0x40*n UeUe N e lement 3: TS1 Message and TX
(current/next TX
0x10+0x40*n . Element 4: TO FIFO Queue chapters
Header Descriptor)
0x14+0x40*n (0<= n <N) Element 5: T1
0x18+0x40*n Element 6: T2/TDO
Element 7:
0x1C+0x40*
XILTXAT TX_AP/TD1
0x20+0x40*n Element O TX Header
0x24+0x40*n Element 1 Descriptor, see TX
0x28+0x40*n X FIFO Q Element 2: TSO descriptor, TX
0x2C+0xd0*n_| * “et‘i; Element 3: TS Message and TX
next/curren
0x30+0x40*n) Element 4: TO FIFO Queue chapters
Header Descriptor)
0x34+0x40*n (0<= n <N) Element 5: T1
0x38+0x40*n Element 6: T2/TDO
Element 7:
0x3C+0x40*
XSLIXAT TX_AP/TD1
PQ_BASE_ADDR[15:0] |0x0+20*m Element O TX Header
0x4+0x20*m Element 1 Descriptor, see TX
0x8+0x20*m Element 2: TSO descriptor, TX
0xC+0x20*m |TX Priority Queue |Element 3: TST Message and TX
0x10+0x20*m |slot m Element 4: TO FIFO Queue chapters
0x14+0x20*m |(0<= m <M) Element 5: T1
0x18+0x20*m Element 6: T2/TDO
Element 7:
0x1C+0x20*
XILTXeTTm TX_AP/TD1

As the L_MEM can be shared across several MH, the SW has some flexibility to allocate TX
FIFO/Priority Queue descriptors anywhere and according to the usage of the application. As an
example, if only 4 TX FIFO Queues are required with a TX Priority Queue with 16 slots, the expected
memory size would be half compared to the maximum configuration possible. It is obvious that this
kind of configuration would assume that TX FIFO Queues are continuous, meaning 0, 1, 2 and 3 AND
TX Priority Queue slots 0, 1, ... and 15.
It has to be considered, that if more TX FIFO Queue and TX Priority Queue slots are required, more
memory space would then need to be allocated. As a matter of fact, if the SW enables all TX FIFO

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

I
103 | 306

X_CAN

I
104 | 306

Queue and TX Priority Queue slots, the worst configuration would be a memory space configured with

8 TX FIFO Queues and 32 TX Priority Queues.

1.4.4.3.2 RX Filter Elements and Ref/Mask Pairs

The filter elements to be parsed are stored in the L_MEM on a 32bit word. The global setting of the RX

Filter is defined by the RX_FILTER_CTRL register and will apply to all filter elements. Several filter

elements can be defined (where n is from value O to 255) with up to m reference/mask pair (where m

is from O to 255). The number of elements is defined in the RX_FILTER_CTRL.NB_FE[7:0] bit field

register, the value O being assigned to no RX filters. Thus, only 255 RX filter elements can be defined

for RX messages.

The Reference (REFm) and Mask (MSKm) pairs are defined after the full list of RX Filter Elements as

defined below.

Memory Base Address |Offset Name Description
(1<=n<=255) (1<=n<=255)
(0<=m<=255) (0<=m<=255)

BASE_ADDRI[15:0] 0x0 FEO Define the RX filter element O
0x4*n-1 FEn-1 Define the RX filter element n-1

BASE_ADDR[15:0]+0x4*n |0x0 REFO RX Filter Reference value O
0x4 MSKO RX Filter Reference mask O
0x0+0x8*m REFm RX Filter Reference value m
0x4+0x8*m MSKm RX Filter Reference mask m

As the L_MEM can be shared across several Message Handlers, the SW has some flexibility to allocate
RX filter elements and reference/mask pairs anywhere and according to the usage of the application.
As a memory space of 64Kbyte is addressable, the start address of those elements is defined in the
RX_FILTER_MEM_ADD. BASE_ADDR[15:0] bit field register.

1.4.5 Functional Description

The MH can manage concurrently up to 8 TX FIFO Queues, up to 8 RX FIFO Queues and up to 32 slots
defined in a TX Priority Queue.

The Message Handler is using the principle of linked list to define RX and TX FIFO Queues, as well as

the TX Priority Queue.

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 105 | 306

The TX messages are managed by TX descriptors which define the TX message header information and
the address of its payload. The payload buffer can be defined in any memory location. More
information provided by chapter TX Descriptor.

The RX messages are written to the memory based on the information defined in RX descriptors
and/or configuration registers. The RX message data can be stored in any memory location. More
information provided by chapter RX Descriptor.

The RX FIFO Queue can support Classical CAN, CAN FD, and CAN XL frame format.

The TX FIFO Queues and TX Priority Queue Slots can support Classic, CAN FD and CAN XL frame
format.

The TX Message Handler processes the TX messages while the RX Message Handler takes care of the
RX messages.

Both share the Descriptor Message Handler to get their TX and RX descriptors respectively. This
module also updates the status at the TX/RX FIFO Queues or TX Priority Queue when a transfer is
completed. A dedicated sub-module in the Descriptor Message Handler is assigned to the TX path and
one for the RX path, they can run concurrently.

The RX/TX FIFO Queues and TX Priority Queue can be fully defined in E_ZMEM when the overall system
latency is low. This means, RX message data, TX message payload data and TX/RX descriptors can be
allocated to the same external memory. For high system latency, it is essential that the RX/TX
descriptors are fetched from SRAM (low access time) while still leaving the RX message data and TX
message payload data in the E_MEM.

The selection of the highest priority TX message and the RX message filtering are done locally using
the L_MEM. Therefore, the highest priority message to be sent is defined in a shorter time.
Regarding the RX filtering, the RX filter elements are fetched from the L_MEM to reduce the
processing time to accept or reject an RX message before a new one comes in.

The MH can drive only one Protocol Controller using the TX MSG and RX_MSG interfaces.
1.4.5.1 TX Message Handler

The TX Message Handler is in charge of TX FIFO Queues and TX Priority Queue management.
Therefore, the TX Message Handler requests the TX descriptors whenever required, arbitrates the TX
descriptors according to their IDs and selects the high priority TX message to be sent to the PRT.

Finally, once a TX descriptor is selected and the PRT is winning the arbitration on CAN bus, it fetches
the payload data assigned to that descriptor from the S_MEM.

The internal arbitration on TX descriptors is called TX-SCAN to avoid a conflict with the arbitration
done on the CAN bus.

A TX filter is put in place to ensure only the relevant TX messages will be sent through the CAN bus.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 106 | 306

1.4.5.1.1 Block Diagram

TO
XCAND_DESC_MH
TXDESC REQ TXACK
INTERFACE INTERFACE
XCAND_MH_TX TX_MESSAGE_CONTROLLER
(TX MESSAGE HANDLER) [e a— TXACK DESC BUFFER
| DA Info Gt
[Address Pointers LXACKOAT A ReeR) : ’:‘DMA info cuz | TX PRT BUFFER
TXACK DATA [CANTSO e
TX_DMA_CHANNEL IR < —
TXDMA
FROM INTERFACE > CAN TDL
XCAND_MH_DMA
[cawmis] >
—— - TX_MSG
EN =1L
FEE —
s2f x
x8=
H_SM L TX DR
FROM TX DWA PRT BUFFER TX ACK DESC PTR BUFFEI EARUNCCLECH
MH_SM_08_TX AP_ TXACK DESC PTR
XCAND_MH_DESC | "eARiy check [TxowarR] [TXACKDESCFR |
:
To_CHECK
ENABLE
TX_QUEUE_CONTROLLER

TX MESSAGE FILTER

TX DESC ADD FOR ACK PTR BUFFER

TXDESC ARBITER BUFFER A TXDESC ARBITER BUFFER B TXPAYLOAD BUFFER

[oW o —{ WA CWL | | [TXPayoassz]

TXDESC PTR BUFFER DWAInfo Cuz WA nfo Cw2 | ——({ | [T Payoad Adar]|

CANTO — cANTO -
DXDESCIRTR CANTL =1 CANTL
o= roamTeo [T — oM R
CLK ——— > TX Payload Add To1 | +—{ X Payoad AdavTDL
TX DESC FQ PTR BUFFER -

TX DESC FQ PTRO T
TX DESC FQ PTRL

RESET_ N ——— > TXDESC FQ PTR NI C SRC_CHECK
L/ X CANDIDATE BUFFER B
CONTROLLER ARBITER
X CANDIDATE BUFFER A
1 [PRIGRAVT TPQTIN
T QUEUE
TXDESC VALID BUFFER CONTROLLER
LECRNIEREECE
—>|
MEM CTRL
INTERFACE
CLK_AXI ———>
— XCAND MH REG FROM INTERRUPTS

XCAND_MH_MEM_CTRL

HOST_AXI ———>

Figure: TX Message Handler block diagram
1.4.5.1.2 Block Description

Several blocks are used to manage the TX message TX FIFO Queues and the TX Priority Queue

1.4.5.1.2.7 TX DMA CHANNEL INTERFACE:

This block interfaces the DMA MESSAGE HANDLER to send read commands to the S_MEM. It will also
buffer payload data in a local TX DMA FIFO before transferring the data to the TX MESSAGE
CONTROLLER. The size of the payload data for a CAN frame can be in the range of 8 bytes for
Classical CAN and up to 2048 bytes for CAN XL.

Every TX descriptor defines the size of the data to be executed. Only one DMA transfer request is
performed per TX descriptor. Every information related to the data transfer is set by the TX MESSAGE
CONTROLLER. The TX DMA FIFO size is set to two maximum burst lengths to allow continuous

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 107 | 306

execution of data transfers. As soon as the TX DMA FIFO has enough space to load a new burst, the
DMA MESSAGE HANDLER will initiate a new fetch from the S_ MEM. Only one data transfer can be
executed at a time. As a matter of fact, when the first defined data transfer is finished, meaning the
data to be read are inside the TX DMA FIFO, a second data transfer can be started. The buffered data
from the first transfer are used for continuous data transfer to the TX MESSAGE CONTROLLER while
waiting for the second DMA transfer.

Only the address pointer ADDR PTR[31:0] and the S/Z£[10:0] (size of the transfer) are required to
fetch the payload data.

The other data transfer parameters are static and defined using control registers.

The TX DMA CHANNEL can accept only one data transfer definition at a time in the TX DMA PTR
BUFFER, so one data transfer can be performed at a time.

1.4.5.1.2.2 TX MESSAGE CONTROLLER:

This block is in charge of sequencing the TX message data to the TX_MSG interface. Two sources of
data are used to build the TX message. The first data comes from the TX descriptor, which contains
the header and the first payload words of the CAN frame. This TX descriptor comes from the TX
QUEUE CONTROLLER and is provided by the ARBITER.

Once the TX descriptor is executed, the address pointer defined in the descriptor is used to fetch
further payload data from the S_ MEM thanks to the TX DMA CHANNEL.

The TX MESSAGE CONTROLLER is in charge of managing new TX descriptors when several descriptors
are used for one TX message. Any new TX message to be sent is solely provided by the ARBITER.

As all TX messages are managed by the TX MESSAGE CONTROLLER, once a message is sent
successfully or not to the PRT, an acknowledge descriptor is provided to the DESCRIPTOR MESSAGE
HANDLER to be written back to the first descriptor of the TX message. If some issues are detected,
the current message is cancelled and all the traffic from the S_ MEM is aborted. Once done, a new TX
message must be already provided by the ARBITER.

The PRT signalizes via ENABLE whether it requires message handling or not. When this signal goes
low, the MH must stop its current activities. This means the TX FIFO Queues and TX Priority Queue are
put on hold as well as all the relevant traffic from and to the S_ MEM must be aborted.

1.4.5.1.2.3 TX QUEUE CONTROLLER:

This block manages the TX FIFO Queues and the TX Priority Queue as well as the TX-SCAN. As soon as
a TX FIFO Queue is started, and/or a TX Priority Queue slot is valid, the TX QUEUE CONTROLLER will
fetch the appropriate TX descriptor from the S_ MEM. Those descriptors are stored in the L_MEM for
further processing. The TX descriptors (only part of it) are fetched from the L_MEM and analyzed to
find out the TX message having the highest priority.

The one selected is stored locally for the TX MESSAGE CONTROLLER to be read. This block computes
the address to read the next TX descriptor for every running TX FIFO Queue, once the current TX

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 108 | 306

message is selected by the TX-SCAN. The block also manages the active slot from the TX Priority
Queue when a new one being declared.

All relevant information for the TX MESSAGE CONTROLLER is provided by this block.

The TX filter uses configuration registers to select between TX messages to be sent to the CAN bus
and TX messages to be discarded.

When the TX-Scan (selection of the TX message with the highest priority) is done, the selected TX
descriptor is read from the L_MEM. To ensure that it is the one already selected, some TX descriptor
bit fields are checked against the expected value stored locally by the TX-Scan. In case one of the bit
fields, listed below, does not match a 7X DESC REQ ERR signal is triggered to the system:

e The IN (instance number)

e The FQN (TX FIFO queue number) if PQ =0

e The PQSN (TX Priority Queue slot number) if PQ = 1
e The PQ (Priority Queue flag)

e The Priority Value assigned to the TX message

1.4.5.2 RX Message Handler

The RX Message Handler is in charge of the RX FIFO Queues. Every RX FIFO Queue uses a linked list of
RX descriptors to identify the exact location in S_ MEM to store the message. The RX Message Handler
requests the RX descriptor whenever required, e.g., when RX filter result of an accepted incoming RX
Message becomes available.

The RX filter identifies any incoming RX messages and determines whether it must be rejected (not
stored) or accepted (stored into one of the RX FIFO queues, defined by the RX filter).

1.4.5.2.1 Block Diagram

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

I
X_CAN 109 | 306

XCAND_MH_RX
(RX MESSAGE HANDLER) RX_MESSAGE_CONTROLLER
RX DMA PTR BUFFER Parity added on data
RX_DMA_CHANNEL
«
£ RXSG
oo 2lg| [tz RX_MSG
T0 INTERFACE g
X CHAREL
XCAND_MH_DMA INTERFACE
"0 CHEEK
ENABLE
FROM =t |MH_SM_08_RX_AP_| RX ACK DESC BUFFER
PARITY. CHECK
XCAND_MH_DESC a r T
X beffr A
FILTER
RX_QUEUE_CONTROLLER
X DESCFQ PTRBUFFER e T ACK DESCPTR BUFFER
[owATeaT] RX FILTER BUFFER
I_. ST iR
{ Ceoxeud] |
conTRoLLER
RETARELAR=S FILTER ELEMENT BUFFER
=)
RX QUEUE
CLK ——>) conTRoUER
] ———
X DESCPTRBUFFER
RESET_N —
X OCPTRBURFER -
Buffer with parity
Address Pointers
RX DESC RX DESC REQ RX ACK MEM CTRL
INTERFACE INTERFACE INTERFACE INTERFACE
FROM TO TO FROM
XCAND_MH_DESC ~ XCAND_MH_DESC XCAND_MH_DESC XCAND_MH_MEM_CTRL INTERRUPTS
HOST_AXI
XCAND_MH_REG
CLK_AXI

Figure: RX Message Handler block diagram
1.4.5.2.2 Block Description
Several blocks are used to manage the RX FIFO Queues:

1.4.5.2.2.7T RX DMA CHANNEL

This block interfaces the DMA MESSAGE HANDLER to send write commands to the S_ MEM. It will also
buffer the RX message data in a local RX DMA FIFO before sending the data to the S_ MEM. The size of
the payload data for a CAN frame can be the size of 8 bytes for Classical CAN and up to 2048 bytes for
CAN XL.

Every RX descriptor of the same RX FIFO Queue has a fixed buffer size to hold data. The size of the
overall transfers is stored locally to identify how many descriptors are required for the RX message
and what the size of each DMA data transfer is.

As a matter of fact, when the RX message exceeds the maximum buffer pointed by the current
descriptor, one or several DMA data transfers are executed. In other words, there are as many DMA
data transfer as RX descriptors per RX message.

Only the address pointer ADDR PTR[317:0] and the S5/ZE[70:0] (size of the transfer) are required to
fetch the payload data. The other data transfer parameters are static and are defined in control
registers.

The RX DMA CHANNEL can accept only one data transfer definition in the RX DMA PTR BUFFER, so
one data transfer can be performed at a time.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 110 | 306

1.4.5.2.2.2 RX MESSAGE CONTROLLER

This block is in charge of sequencing the RX message data from the RX_MSG interface to the
RX_DMA_CHANNEL and to filter the incoming messages (refer to the RX Filter chapter for more
details).

The RX message is managed by the RX MESSAGE CONTROLLER. Once a message is received
successfully, an acknowledge descriptor is provided to the DESCRIPTOR MESSAGE HANDLER to be
written back to the first descriptor of the RX message. This first descriptor is used along the process
of receiving a message and is the only one which is acknowledged and holds the header data.

If an error was detected, the current message will be cancelled and the storage to the S_ MEM will be
aborted. Once done, a new RX message can be processed, and the RX descriptors of the previously
aborted message are reused.

To avoid duplication of buffers, the data from the PRT is stored directly into the RX DMA FIFO without
waiting for the result of the filter. Once the result of the filter is known (RX message accepted or not
accepted), the CAN data being received is stored in the S_MEM or discarded.

The PRT signalizes via ENABLE whether it is active and requires message handling or not. When this
signal is going low, the MH stops current activities. This means that the RX FIFO queues are put on
hold as well as the traffic from and to the S_MEM will be aborted.

1.4.5.2.2.3 RX QUEUE CONTROLLER

This block manages the RX FIFO Queues and keeps track of the write pointers to use for each of them.
As soon as an RX FIFO Queue is started, the RX QUEUE CONTROLLER is allowed to request
descriptors from the DESCRIPTOR MESSAGE HANDLER. The descriptor to be used is stored into the
local RX DESC BUFFER and is the result of a request to the DESCRIPTOR MESSAGE HANDLER when
the RX FIFO Queue is identified by the Filter. This block also computes the address to read the next
RX descriptor for every RX FIFO Queues running, once used. All the relevant information to write data
to the S_MEM or to generate an interrupt when receiving a message is provided to the RX MESSAGE
CONTROLLER.

In case that several descriptors are required for one message, the RX QUEUE CONTROLLER can
request the next descriptor from the DESCRIPTOR MESSAGE HANDLER as soon as RX MESSAGE
CONTROLLER has taken over the current descriptor.

1.4.5.3 Descriptor Message Handler

The Descriptor Message Handler is in charge of providing RX descriptors from the S_ MEM, used by the
RX MESSAGE HANDLER, respective TX descriptors used by the TX MESSAGE HANDLER.

As soon as an RX or a TX message was completed, it provides the acknowledge data and message
header to the dedicated first descriptor in the S_ MEM.

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 111 | 306

This sub-module only manages RX/TX descriptors fetched and acknowledged on request from the TX
MESSAGE HANDLER and the RX MESSAGE HANDLER.

As the RX and TX and Acknowledge paths are fully concurrent, it would be up to the DMA controller
(managing the traffic from/to the S_ MEM) to decide which request to serve first.

As the CAN bus is unidirectional, there should be a low collision rate on the AXI| bus interface on the
same channel.

The parallel processing of TX/RX descriptors will decouple functions between the two paths. Such
approach relaxes the constraints on those two concurrent data flows, considering use cases where
both are active at the same time. Furthermore, while receiving a CAN Frame, TX descriptors can be
fetched from the S_MEM on request or while executing RX FIFOs. This approach lowers the complexity
of use case management.

Regarding the acknowledge of descriptors, the same strategy is used, i.e., the acknowledge path does
not interfere with the RX and TX data path.

Any configuration register is defined into the main register bank of the Message Handler.

1.4.5.3.1 Block Diagram

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

y
X_CAN 112 | 306

FROM XCAND_MH_RX TO XCAND_MH_RX

RXACK RX DESC REQ RX DESC
INTERFACE INTERFACE INTERFACE

[XCAND_MH_DESC
(DESCRIPTOR MESSAGE HANDLER)

[ACK_DESC_DMA_CHANNEL [Bufer with parity
ACK DESC DMA FIFO ACKfDES<:7CONTROLLER :l Address Pointers
CARTRIRX AGKT oK DESG BUFFER
A reRmace T N
TO INTERFACE
S AcK CHEL o [
XCAND_MH_DMA Toreres e e
ACK DESCRIPTOR —>
CONTROUER J
TERPAE oK DESC PTR BUFFER
WH_Sw_0s_oESC_RX
AR PARITY CHEGK
£ h_s_0s rx_e |
ARy Gk

MH_SM_06_DESC_TX
ACK_PARITY _CHECK

RX_DESC_CONTROLLER

MH_SM_09_TX_AP_|
PARITY_CHECK

RX_DESC_DMA_CHANNEL
RX DESC DA FIFO
RX DESC DMA CANRXDESET0
INTERFACE —>
FROM E=s X RXREQ CMD BUFFER
XCAND_MH_DMA CHANNEL] oescurror
e A CONTROLLER 1> marovere |
RX DESC BUFFER
<-|
RX DESCRIPTOR
CONTROLLER

INTERFACE

MH_SM_03_DESC_RXD
ESC_CRC_CHECK

Lﬂ

MH_SM_04_DESC_RXDESC _
'SRC_CHECK

INTERRUPTS <+— TX_DESC_CONTROLLER
TX_DESC_DMA_CHANNEL
TX DESC GRC BUFFER Tx
TXDESC DA FIFO
[mxoescore] DESCRIPTOR
TX DESC DMA > CoNTROLLER
FROM INTERFACE xoesc
XCAND_MH_DMA CHANNEL H_SM_01_DESC_TXDESC
INTERFACE Grecx MH_SM_02_DESC_TXOESC_
) le— SRE_CHEGK
CLK L “TX DESCRIPTOR TX REQ CMD BUFFER

CONTROLLER
INTERFACE IN & (FQNPQSN) & RC & PQ

RX DESCPTR

TX DESC MEMORY
INTERFACE

MH_SM_09_TX_AP.

RESET_N —— o Bes e

=

TXACK
INTERFACE

TX DESC REQ MEMCTRL
INTERFACE INTERFACE

CLK_AXI
= XCAND_MH_REG o

HOST_AXI XCAND_MH_TX ~ XCAND_MH_MEM_CTRL

Figure: Descriptor Message Handler block diagram

1.4.5.3.2 Block Description

1.4.5.3.2.71 TX DESC CONTROLLER

This block stores read descriptor requests from the TX_ MESSAGE_HANDLER and sends them to the
TX_DESC_DMA_CHANNEL. It can accept up to two requests when there is a need to pre-fetch TX
descriptors.

To provide the request to the TX_ DESC_DMA_CHANNEL, the block sends only the address of the TX
descriptor ADDR PTR[317:0] (the size of the TX descriptor is always identical). Other control signals
manage the handshaking. On top of those information, an abort signal is provided to stop the current
data transfer on the DMA channel, when requested by the TX MESSAGE_HANDLER.

Once a TX descriptor is provided by the TX DESC_DMA_CHANNEL, several checks are performed to
ensure the correctness of the descriptor and its validity. These checks are (in the order):

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 113 | 306

e The VALID bit in the TX descriptor is checked to ensure descriptor is valid. The following
check is performed only if the VALID bit equals 1

e A CRC check is done on the TX descriptor. In case a CRC error is detected, a CRC error is
triggered to the system using the 7TX DESC REQ_ERR signal. The following check is
performed only if there is no CRC issue

e The instance number IN[2:0], either the TX FIFO Queue number FQN[3:0] or the TX FIFO
Queue slot number PQSN[4:0], the rolling counter RC[4:0] bit fields of the TX descriptor
and the Priority Queue bit PQ are checked against the expected values from the request
(see TX descriptor definition chapter for more detail on those bit fields). In case that one
of the bit fields does not match, a 7TX_ DESC REQ _ ERR signal is triggered to the system

Whatever the result of the checks done on the TX descriptor, it is always written to the L_ MEM. Doing
so, the wrong TX descriptor can be read from the L_MEM, if required for debug purpose.

To store the TX descriptor, a write access is performed to the L_MEM through the memory controller
interface. As the size of the TX descriptor to write does not change, the number of words to be written
is identical for all descriptors. As soon as a TX descriptor is checked and no issue is identified, it is
written to the L_ MEM and a notification is sent to the TX MESSAGE_HANDLER.

The TX descriptor from the S_ MEM is stored locally for filtering. Once stored and accepted, it is
written to the L_MEM. In case a Header Descriptor is rejected, the 7TX F/ILTER /IRQ is triggered to the
system. The TX MESSAGE CONTROLLER is notified that the requested TX descriptor is rejected and
will not be provided. Refer to the TX Filter chapter for a detailed description.

1.4.5.3.2.2 TX DESC DMA CHANNEL

This block interfaces the DMA_CONTROLLER to send read commands to the S_ MEM. It will also hold
the TX descriptors in a local DMA FIFO before sending the data to the TX DESC_CONTROLLER when
available and complete. As the TX descriptor has a fixed size (8 words of 32bit), the data transfers,
that are executed by the DMA channel, will always be the same. Only the address pointer

ADDR PTR[317:0]is required to fetch the TX descriptor. The other transfer parameters are static and
are stored in control registers. As the received FIFO can accept only one TX descriptor, only one data
transfer can be performed at a time. There is no check performed by this block as everything is done
by the TX DESC_CONTROLLER which hold the read request definition. More details provided by the
DMA CONTROLLER chapter.

1.4.5.3.2.3 RX DESC_CONTROLLER

This block is in charge of storing read descriptor requests from the RX_ MESSAGE_HANDLER and to
send them to the RX_ DESC_DMA _CHANNEL. It is possible to accept up to two requests when there is a
need to pre-fetch RX descriptors for large payload data defined in RX messages.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 114 | 306

To provide the request to the RX_ DESC_DMA_CHANNEL, this block sends the address of the RX
descriptor ADDR PTR[37:0]. Other control signals manage the handshaking. On top of those
information, an ABORT signal is provided to stop the current data transfer on the DMA channel when
requested by the RX_MESSAGE_HANDLER.

Once an RX descriptor is provided by the RX_DESC_DMA_CHANNEL, several checks are performed to
ensure the correctness of the descriptor. These checks are (in the order):

e The VALID bit in the RX descriptor is checked to ensure descriptor is valid. The following
check is performed only if the VALID bit equals O

e A CRC check is done on the RX descriptor. When the CRC is valid, the RX descriptor is sent
to the RX_MESSAGE_HANDLER, otherwise a CRC error is triggered to the system using the
RX DESC REQ _ERR signal. The following check is performed only if there is no CRC issue

e The instance number IN[2:0], the RX FIFO Queue number FQN[3:0] and the rolling counter
RC[4:0] bit fields of the RX descriptor are checked against the expected value mentioned in
the request (see RX descriptor definition chapter for more detail on those bit fields). In
case one of the bit fields does not match, an RX_ DESC REQ ERR signal is triggered to the
system

1.4.5.3.2.4 RX DESC_DMA CHANNEL

This block interfaces the DMA_CONTROLLER to send read commands to the S_MEM. It will also hold
the RX descriptors in a local DMA FIFO before sending the data to the RX_ DESC_CONTROLLER when
available and complete. As the RX descriptors have the same size (2 words of 32bit), the data transfer
to be executed by the DMA channel will always be the same. Only the address pointer

ADDR PTR[317:0], to fetch the RX descriptor, is required. The other data transfer parameters are static
and defined using control registers. As the received FIFO can accept only one RX descriptor, only one
data transfer can be performed at a time. There is no check performed by this block as everything is
done by the RX DESC_CONTROLLER holding the read request definition. For more details on the
DMA_CONTROLLER interface, see the relevant chapter.

1.4.5.3.2.5 ACK_DESC CONTROLLER:

This block manages the RX_ MESSAGE_HANDLER and TX MESSAGE_HANDLER request when an RX or
TX descriptor being executed needs to be acknowledged. As soon as the RX_ MESSAGE_HANDLER has
completed its execution using one RX descriptor, the relevant information (transfer status and errors
mainly) of that transfer must be sent back to the first descriptor. To do so, the
RX_MESSAGE_HANDLER and TX MESSAGE_HANDLER will send a request to the
ACK_DESC_CONTROLLER to write acknowledge data into the respective Header Descriptor.

The ACK_DESC_CONTROLLER can only accept data when the ACK DESC DMA FIFO has enough data to
store it. If this DMA FIFO cannot accept the data, it will hold any request from either
RX_MESSAGE_HANDLER and/or TX_ MESSAGE_HANDLER. Acknowledge data are build and stored in

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 115 | 306

the RX_MESSAGE_HANDLER and TX_ MESSAGE_HANDLER. This way, any updates along the reception
or transmission of a TX message will automatically be done locally on the sub-module. As the CAN bus
is unidirectional, there should be no conflict regarding RX and TX descriptors being acknowledged at
the same time. The only exception would appear when the PRT is set in loopback mode. As soon as
the ACK DESC DMA FIFO in ACK_DESC_DMA_CHANNEL provides the right FIFO level to receive one
burst of data, the ACK_DESC_CONTROLLER will write those data and will push the address pointer of
those data. Despite that RX and TX acknowledge requests may not occur at the same time, the higher
priority is always given to the RX path. The ACK_ DESC_CONTROLLER will always start writing the
acknowledge data (always 4x32bit) to the DMA FIFO in ACK_DESC_DMA_CHANNEL whatever the
request source is, either TX_ MESSAGE_HANDLER or RX_ MESSAGE_HANDLER. At last, it will write the
address pointer of that descriptor triggering at the same time a new DMA data transfer. The option, to
provide a priority signal to define the urgency of the writing, exists.

1.4.5.3.2.6 ACK DESC DMA_CHANNEL

This block interfaces the DMA_CONTROLLER to send write commands to the S_MEM. It also holds
bursts to be sent over the interconnect into a local DMA FIFO before triggering the
DMA CONTROLLER to send it to the S_MEM.

As the acknowledge data for RX and TX descriptors has a fixed size (4 words of 32bit), the data
transfer to be executed by the DMA channel will always be the same. Only the address pointer to
write the burst is required as well as a priority signal to manage the urgency of the request. The other
data transfer parameters are statics and are provided by control registers. As the transmit DMA FIFO
can accept only one burst, one transfer can be performed at a time. More details are provided by the
chapter DMA_CONTROLLER.

1.4.5.4 DMA Message Handler

The DMA CONTROLLER reads and writes bursts of data from and to the S_MEM through its AXI4
master interface DMA AX/ (compliant to AMBA 4 ARM Ltd protocol, see [5]). In that sense the DMA
CONTROLLER manages request commands from sub-module that is in charge of sending/receiving
TX/RX messages as well as fetching RX/TX descriptors.

It is in charge of providing data to the sub-module which is responsible to send TX messages (TX
MESSAGE HANDLER) as well as to the sub-module that manages the RX and TX descriptors
(DESCRIPTOR MESSAGE HANDLER). It manages all data from a received RX message (RX MESSAGE
HANDLER) as well as writes back information into RX/TX descriptors when required (DESCRIPTOR
MESSAGE HANDLER).

1.4.5.4.1 Block Diagram

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

y
X_CAN 116 | 306

XCAND_MH_DMA
(DMA MESSAGE HANDLER)

MH_SM_10_RX_DP_
PARITY_CHECK
(Only valid for RX XCAND_MH_RX

message data) (RX MESSAGE
HANDLER)

RX_MSG
| —————

DMA write channel 0

DMA_WRITE_CH_CORE

DMA write channel 1

MH_SM_12_DMA_CH_

IF_CHECK v
=4
DMA_AXI
XCAND_MH_DESC
DMA read channel 0 (DESC MESSAGE
J HANDLER)
DMA read channel 1
DMA_READ_CH_CORE
— I
o]
3
§ DMA read channel 2
3 XCAND_MH_TX | TX_MSG
s (TXMESSAGE [—>
= HANDLER)
o
CLK —

RESET_N —f

INTERRUPTS <«—

HOST_AXI
- XCAND_MH_REG

CLK_AXI

Figure: DMA Message Handler block diagram
1.4.5.4.2 Block Description

The DMA build in the XCAND_MH_DMA block has a static configuration, once the SW has written the
registers, they must not be changed excepted if all DMA channels are stopped.

An arbitration process will take place to define which request command is to be served first.
As several concurrent read and write accesses can be foreseen, refer to
AXI_PARAMS.AR_MAX_PENDI[1:0] and AXI_PARAMS.AR_MAX_PENDI[1:0] bit field registers.

To maximize the AXI throughput, whatever the number of data transfer to be done, the DMA Controller
ensures the usage of the maximum burst length whenever possible. To do so, the DMA Controller is
always trying to generate a burst length for the first transfer to get an aligned address burst size for
the next data to be transferred (maximize the usage of maximum burst size for transfers).

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 117 | 306

The RESP ERR/[7:0] interrupts are used to trigger the system for any bus error, when reading or
writing the S_ MEM and L_MEM.

Before starting any transfer, a DMA read/write channel must be enabled. The
TX_FQ_CTRL2.ENABLE[n], RX_ FQ_CTRL2.ENABLE[n] and TX PQ_CTRL2.ENABLE[n] bit field registers
are used to identify when the DMA channels are required. If none of those enable bit are set to 1, no
data transfer can occur.

The DMA is intended to:
e Write all received RX message data coming from the PRT to the S MEM at a defined address
location (specified into RX descriptors). This traffic does concern only the RX MESSAGE
HANDLER

e Write the acknowledge data of TX messages back to the relative TX descriptor. This traffic is
owned by the DESCRIPTOR MESSAGE HANDLER

e Write the acknowledge data of RX messages back to the appropriate RX descriptor. This
traffic is owned by the DESCRIPTOR MESSAGE HANDLER

e Read TX descriptors where the TX message header is defined with some other relevant
information like the address pointer of the payload data. This traffic is owned by the
DESCRIPTOR MESSAGE HANDLER

e Read RX descriptors according to the RX message being filtered to identify which location to
write the received data. This traffic is owned by the DESCRIPTOR MESSAGE HANDLER

e Read TX message payload data from the S_MEM when the corresponding message header is
winning the CAN bus arbitration. This traffic does concern only the TX MESSAGE HANDLER

1.4.5.4.2.71 DMA WRITE_CH_CORE:

This block is in charge of:
e Writing data to the S_MEM and to have those transfers compliant to the AXI4 AMBA protocol
e Providing the appropriate write burst length for a maximum system bus efficiency according
to the number of data to be sent

e Reading the relevant amount of data from a defined DMA write channel through the read
FIFO interface
e Arbitrating among the different DMA write commands of those channels
e Stopping any AXI data transfer any time without locking the AXI| write system bus interface
The DMA_WRITE_CH_CORE stores and sends all write commands to the S_MEM. As soon as a write
command is granted, the required data is fetched from the read FIFO interface of the corresponding
channel and is written to the AXI write system bus interface.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 118 | 306

A classic read FIFO interface is provided at the block interface to avoid embedded data FIFOs. This
kind of implementation allows to scale the data FIFO assigned to any DMA write channel without
having to modify the DMA controller. Only the level of the FIFO to be read must be provided to ensure
a proper handshaking. The read FIFO interface is defined as a 32bit data bus width with a read
enabled and a FIFO level to ensure enough data are present in the FIFO to perform a new burst.

Once a command is received from a DMA write channel, the arbitration process takes care of the right
command to execute.

Any write command selected by the arbiter must only be issued by a sub-module if all the relevant
data of the burst are present in the local FIFO of the sub-module.

As long as the DMA FIFO level is not empty, AXI write commands will be issued according to the write
outstanding value set in the AXI_ PARAMS.AW_MAX_ PEND[1:0] bit register.

It is not allowed to insert wait state in between data read from the FIFO interface.

1.4.5.4.2.2 DMA READ CH_CORE:

This block is in charge of:
e Reading data from the S_MEM and to have those transfers compliant to the AXI4 AMBA
protocol
e Providing the appropriate read burst length for a maximum system bus efficiency according
to the number of data to be fetched

e Writing the relevant amount of data to a defined DMA read channel through the write FIFO
interface
e Arbitrating among the different DMA read command of those channels
e Stopping any AXI data transfer any time without locking the AXI read system bus interface
The DMA_READ_CH_CORE stores and sends all read commands to the S_ MEM. As soon as a read
command is granted, the required data is fetched from the AXI write system bus interface and is
written to the read FIFO interface of the corresponding channel.

A classic write FIFO interface is provided at the block interface to avoid embedded data FIFOs. This
kind of implementation allows to scale the data FIFO assigned to any DMA read channel without
having to modify the DMA controller. Only the level of the FIFO to be written must be provided to
ensure a proper handshaking. The write FIFO interface is defined as a 32bit data bus width with a
write enabled and a FIFO level to ensure enough storage is present in the FIFO to receive a new burst.

A read command from the DMA read channel would need to define all the relevant information to
describe the read data transfer to be executed.

Once a command is received from a DMA read channel, the arbitration process will take care of the
right command to be executed.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 119 | 306

As long as the DMA FIFO level is not full, AXI read commands will be issued according to the read
outstanding value set in the AXI_PARAMS.AR_MAX_PEND[1:0] bit register.

It is not allowed to insert wait state in between data written to the FIFO interface.
1.4.5.4.3 Data Transfer Mode

Several data transfer type can be defined:

No Transfer: When the register AXI_ PARAMS.AW_MAX_PEND[1:0] is set to 0, no AXI write transfer is
executed. There is the option to have the MH fully active and running without the need of an external
memory to receive RX messages. Acknowledges will not be written, so this mode is considered for
debug purpose only. When the AXI_PARAMS.AR_MAX_PENDI[1:0] is set to 0, no read access is
performed and without TX/RX descriptor read, the MH will be waiting forever.

The AXI_PARAMS.AW_MAX_PEND[1:0] and AXI_PARAMS.AR_MAX_PEND[1:0] can set the maximum
number of read/write outstanding commands on the DMA AX/ interface.

1.4.5.4.4 Data Transfer Description

1.4.5.4.4.71 Address bus

The DMA is able to address up to 4Gbyte memory space (DMA AXI AWADDR[317:0] and

DMA _AXI ARADDR/[37:0]) but in order to support SoC with bus addresses higher than 32bit, the
AXI_ADD_EXT register can be used to extend the AXI address up to 64bit. The AXl addresses for read
and write transaction is then build as:

o DMA AXI AWADDR[63:0] = AXI_ADD_EXT[31:0] & address from embedded MH DMA engine
(32bit)

o DMA AXI ARADDR[63:0] = AXI_ADD_EXT[31:0] & address from embedded MH DMA engine
(32bit)

1.4.5.4.4.2 Burst size

The maximum number of bytes to transfer in each data transfer is fixed and set to 4. Any read or write
transfer always uses 32bit.

When considering TX message for instance, the payload data being defined as byte must be 4byte
aligned when read from the S_MEM.

For the RX message, if data to be written to S_ MEM is not properly aligned (CAN frames are byte
aligned) padding bytes are added to complete the last word (4byte). The padding bytes are set to
0x00.

As a consequence, the write strobe signals are not managed by the DMA CONTROLLER as all 4 bytes
are always written.

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 120 | 306

1.4.5.4.4.3 Burst length

The DMA CONTROLLER for the AXI read and write transfers supports INCR burst lengths from 1 to 8,
considering an AXI 32bit data bus width. The DMA_AXI_ AWLEN[3:0] and DMA_AXI_ARLEN[3:0] are
sized to support a maximum burst length of 16 despite only 8 is possible. To be fully compliant with
the AXI4 AMBA protocol [5] the DMA _AXI_ AWLEN[7:4] and DMA_AXI| ARLEN[7:4] are considered as
0b0000.

The DMA Controller will always try to align its burst address to make full benefit of the maximum
allowed burst length. The address burst value must always be 32byte aligned to ensure the maximum
burst length (8x32bit). Whatever the data transfer mode, the DMA engine will reduce (if needed) the
size of the first burst to align the address to the maximum burst length. Depending on the amount of
data to be transferred, the last burst can be shorter.

It is important to optimize the access to the S_MEM, especially if a low number of data transfers is
performed. As an example, if a data transfer of 12x32bit needs to be executed and the start address is
32byte aligned, it will result in two burst 8x32bit and 4x32bit. In case the start address is not aligned,
and the worst scenario is assumed, this can lead to 3 bursts 3x32bit and 8x32bit and 1x32bit or
2x32bit and 8x32bit and 2x32bit or 1x32bit and 8x32bit and 3x32bit.

In case a high latency is expected in the SoC, it is essential to limit the number of burst and to make
sure that, whenever it is possible, to align the start address to the maximum burst size.

The DMA CONTROLLER provides a variable burst length of data, according to the sub-module
command requests.

The burst lengths from/to sub-modules connected to the DMA CONTROLLER are defined based on the
data type of information to be used.

Here below are the expected burst lengths from/to the sub-modules:
e TX MESSAGE HANDLER: This sub-module does read the TX payload data from the S MEM
through the DMA read channel 2. The maximum burst length is limited to 8x32bit. There is
no write access from this sub-module.

¢ RX MESSAGE HANDLER: This sub-module writes the RX message data to the S_ MEM through
the DMA write channel 1. The maximum burst length is limited to 8x32bit. There is no read
access from this sub-module.

e DESCRIPTOR MESSAGE HANDLER: This sub-module performs a fixed burst read of 8x32bit
to read TX descriptors from the S_ MEM through the DMA read channel 2. A fixed burst
length of 2x32bit is used instead to read RX descriptors through the DMA read channel 0.
To acknowledge any transfer from and to the CAN bus, a fixed burst length of 4x32bit is
written back to either the RX descriptor for RX message or to the TX descriptor for TX
message.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 121 | 306

1.4.5.4.4.4 Outstanding

In order to support read and write outstanding commands and to limit the FIFO size, the maximum
burst length is limited to 8x32bit. The maximum outstanding expected at the DMA AX/interface is
programmable, see AXI_PARAMS.AW_MAX_PENDI[1:0] and AXI_PARAMS.AR_MAX_PEND[1:0] bit field
register. Up to 3 outstanding can be specified for read and write transactions. Even if set to the
maximum value, the maximum number of outstanding performed by the MH will depend on many
parameters like the system latency, the CAN Bus bit rate, the MH and PRT clock ratio, ...

1.4.5.4.4.5 Burst type

The only burst type supported is the burst incrementing INCR.
The WRAP/FIXED burst type is not supported.

1.4.5.4.4.6 Multi-region

The DMA controller AXI4 system bus interface does not support multiple region interfaces, see [5] for
more details.

1.4.5.4.4.7 Memory attributes

The memory attributes for the read or write accesses to memory are Normal, Non-modifiable (Non-
cacheable in AXI3) and Non-bufferable. No read-allocate nor No Write-allocate are expected on this

interface and would be set to 0.
This means DMA AXI AWCACHE[3:0] and DMA AX| ARCACHE[3:0] are set to 0b0000.

As a reminder, Non-bufferable means (See [5] for more details):
e The write response must be obtained from the destination.
e Read data must be obtained from the destination.
e Transactions are Non-modifiable
e Read and write transactions from the same ID to addresses that overlap must remain
ordered.
As a reminder, Non-modifiable means:
e A Non-modifiable transaction must not be split into multiple transactions or merged with
other transactions.
e In a Non-modifiable transaction, the parameters AXADDR, AxSIZE, AXLEN, AxBURST and
AxPROT must not be changed.

1.4.5.4.4.8 Access permissions

It is considered that any access is always defined as Data, Non-secure and the operating mode is
Unprivileged, see [5] for more details. As a consequence, the DMA_AXI_ ARPROT[1] and
DMA_AXI_AWPROT[1] are set to 1. Those settings cannot be changed by SW. This means
MEM_AXI_A(W/R)PROT[2:0] is set to 0b010.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 122 | 306

1.4.5.4.4.9 Transaction ID

The DMA CONTROLLER generates the ID of every burst access based on the number of channels
defined. It provides a way to track on the system bus which DMA channel is doing the access at any
time.

For the AXI read interface, the DMA AXI_ARID[7:0] defines the channel number as follow:
2’b00 => RX descriptor fetch from S_MEM

2’b01 => TX descriptor fetch from S_ MEM

2’b10 => TX data payload read from S_MEM

For the AXI write interface, the DMA AX] AWID[0] defines the channel number as follow:
1’b0 => TX/RX descriptor acknowledge to S_MEM

1’b1 => RX message data write (payload and header) to S_ MEM

1.4.5.5 TX Descriptor

TX descriptors are used for the TX FIFO Queues and the TX Priority Queue. They can be fetched with
one AXI burst, as the overall size is only 8x32bit.

Many bit fields are common, but some are different between TX FIFO Queue and TX Priority Queue.
Details are provided in the following table.

Further information is provided by the chapter TX Message Header Definition.

1.4.5.5.1 TX Priority Queue Descriptor Overview

Table: TX Priority Queue Descriptor Overview

TX PRIORITY
QUEUE 31 30 29 | 28 27 26 | 25 | [24:16] 15 |14 | 13 | 12 | 11 | [10:9] [8:4] 312|110
DESCRIPTOR
—_ - —_ /a
o - S 7 = B =
oo © 4 = 28 — o 8 2 s
o o 3 b — () — - — S = O
al &9 o| = g 2| o 2 I o 5] S 3 =
DMAInfoctrl | €1 2 F %| | o g 2| & 9 S 2 2 2 = 8 S &
= 8 g o AR S E Q ko) O =2 O = Ee] <t '5 ©
1 S Ly = - g &£ O x D 5 5 @ o 2 2
B = = w g £ = 0 o .= n
o 9 x 3 O| o © a = = = g
I 9 u o - o - o) =
= =z o ot ° o =<
= 2 a =z = o
°c . = &)) °c
S & Q S S S
3 O g @ = 5 3 3 3
DMA Info Ctrl e < S o gz L £ L
2 k5 T N3 z 8 ® Q ®
0 7 = 5 n S 0
> =< s = = =
- - (2] - (@] -
) ~ k=] [a] (]
2 = 2 [2
TS0[31:0]
TSO)
(TimeStamp[31:0])
Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 123 | 306
TS1[31:0]
TS1
(TimeStamp[63:32])
TO[31:0]
TO
(TX Message Header Information)
T1[31:0]
T1

(TX Message Header Information)
T2[31:0] / TDO[31:0]
(TX Message Header Information / First TX Data Payload)
TX_AP[31:0] / TD1[31:0]
(TX Payload Data Address Pointer / Second TX Data Payload)

T2/ TDO

TX_AP / TD1

Managed by SW and
HW

1.4.5.5.2TX FIFO Queue Descriptor overview

Table: TX FIFO Queue Descriptor Overview

TX FIFO
QUEUE 31 30 29 | 28 | 27 26 | 25 [24:16] 15 (14 (13|12 (11 |10 |9 | [84] |[3|2(1]| O
DESCRIPTOR
5 | s 2 R 2
S 5 2l 3 3 5 5 2 s 3| & =5
= [@
DMAInfoctrl | Sl S I % 8| g g S| 2 @, S e 2| 23 R
| Y & | elx g 8 3 O =z 3 ° o I e n 8
1 S| 2 @ = o= S e S s b @ < = 9
a @2 > s O L g a a = n o
0] g O > > el =
I % < a o - = o)
= e <] =] T P
o =z =z =
S = | s = 5
— [} e}
2 8 2 2 = e
3 o g s 5 3 g g
DMA Info Ctrl X < o 8 = o = L
2 3 z N2 z ¢ 8 3 8
= L] = o =
- t 2 - a -
2 S 2 I 2
b=
150 TS0[31:0]
(TimeStamp[31:0])
51 TS1[31:0]
(TimeStamp[63:32])
To TO[31:0]
(TX Message Header Information)
- T1[31:0]
(TX Message Header Information)
Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 124 | 306
T2[31:0] / TDO[31:0]
T2 /TDO
(TX Message Header Information / First TX Data Payload)
TX_AP[31:0] / TD1[31:0]
TX_AP / TD1

(TX Payload Data Address Pointer / Second TX Data Payload)

HW

Managed by SW and

1.4.5.5.3TX Descriptor Description

Element
Number

Bit
field

Name

Managed
by

Description/Constraints

0

[31]

VALID

SW/MH

Valid: The SW must set this bit to 1 to define a TX
descriptor is valid for the MH. When the descriptor has
been fully used, the MH will clear this bit when writing
the acknowledge data information back to this
descriptor. This update occurs only when the HD bit is
set to 1.

In case the descriptor is fetched when this bit is set to
0, an interrupt 7X FQ /RQ is triggered to the system for
the TX FIFO queue n having this descriptor.

[30]

HD

SW only

Must be set to 1

[29]

WRAP

SW only

Wrap: When set to 1 the next message descriptor is the
one declared at the initial start address of the TX FIFO
Queue (First Descriptor). This bit provides a way to the
SW to keep the next TX message continuous in a
memory buffer if less space is available at the end of a
data container

[28]

NEXT

SW only

Must be set to O

[27]

IRQ

SW only

Interrupt: when set to 1 an interrupt is triggered to the
system when the descriptor execution is complete,
meaning when the TX message has been sent to the CAN
bus

[26]

PQ

SW only

TX Priority Queue: when set to 1, the TX descriptor
belongs to the TX Priority Queue
TX FIFO Queue: must be setto 0

[25]

END

SW only

For the TX FIFO Queue: when set to 1 the TX FIFO
Queue defined is ending, it means, it is set as inactive.
Once done, the TX FIFO Queue can be reprogrammed
and started

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 125 | 306
Element |Bit Name Managed |Description/Constraints
Number (field by

For the TX Priority Queue: must be set to O

[24:16] |CRC[8:0] SWonly |CRC: this CRC is computed by the SW for the current TX
descriptor. It must consider all elements assuming this
bit field as set to 0. Any CRC error is triggering an
interrupt to the system. The CRC is not evaluated if the
MH_SFTY_CTRL.TX_DESC_CRC_EN bit is set to 0.
[15:12] |[FQN[3:0] SWonly [TX FIFO Queue: define the TX FIFO Queue number
allocated to this TX descriptor. Despite being set to
4bit, only the FQN[2:0] bit range is used

PQSN[4:1] |Swonly [TX Priority Queue: define the TX FIFO Queue slot
number allocate to this descriptor

[11] reserved SWonly [TX FIFO Queue: must be set to 0

PQSNI[O] SWonly [TX Priority Queue: define the TX FIFO Queue slot
number allocate to this descriptor

[10:9] |Not used SW only Must be setto O

[8:4] RC[4:0] SW only Rolling Counter: use to track the order of TX descriptor
fetched when a TX FIFO Queue or a TX Priority Queue
slot is running.

TX FIFO Queue: The first TX descriptor in a TX FIFO
Queue must have the RC[4:0] set to 5’b00000 (before
first start). This value must be incremented for every
new TX descriptor up to 5’b11111 and then back to
5’b00000, and so on. If a TX FIFO Queue is circular,
meaning the FIFO restarts at the first TX descriptor, the
RC[4:0] must be updated accordingly based on the
RC[4:0] defined and executed in the last TX descriptor
of the TX FIFO Queue.

TX Priority Queue: This bit field must be set to 5’00000
as the default value for the TX Header descriptor
defined in the slot.

[3:0] STS[3:0] MH only Status: gives the status of the TX message transmitted.
The MH writes back only the Header Descriptor (HD bit
set to 1) for status report. The SW must always set it to
0

0’b0000: none

0’b0001: message sent successfully

0’b0010: message not sent after a number of trials
0’b0011: message skipped due to HFI

0’b0100: message rejected by TX filter

0’b0101: reserved

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 126 | 306
Element |Bit Name Managed |Description/Constraints
Number (field by

0’b0110: reserved

0’b0111: reserved

0’b1000: reserved

0’b1001: reserved

0’b1010: reserved

0’b1011: reserved

0’b1100: reserved

0’b1101: reserved

0’b1110: reserved

0’b1111: message acknowledge data with parity error

1 [31:27] |Not Used SW only Must be set to 0

[26] PLSRC SW only Payload Source: This bit provides to the MH the
information about the need to fetch payload data in the
data container when executing only a TX Header
Descriptor.

When set to 1: the TX descriptor is attached to a data
container which would need to be accessed and the bit
field SIZE[9:0] defines the number of TX data to send
for this descriptor. For CAN XL, as no payload data can
be defined in TX descriptor, this bit is always set to 1
for CAN XL. For CAN FD, this bit is set to 1 when the
payload data is greater than 4bytes.

When set to 0: the payload data defined in the data
container are not required. Therefore, the TX descriptor
includes all data payload. For the Classical CAN, all
payload data are always included, this bit must always
be set to 0. In case of CAN FD, it would be set to 0 only
when the payload data is less or equal to 4bytes.
Nevertheless, the bit field SIZE[9:0] still defines the
number of payload data to send per TX descriptor
[25:16] |SIZE[9:0] SW only Define the buffer size in word (32bit) for the given TX
descriptor to transmit to the PRT. As an example, a
payload from 1 to 4 bytes requires SIZE to be set to 1.
As only 32bit read accesses are performed the buffer
size containing the payload must be 32bit aligned.
When set to 0, there is no payload data attached to the
TX descriptor (only valid for Classical CAN/CAN FD
without payload or a Classical CAN remote frame)

For CAN XL no data is defined in TX descriptor. The MH
replies only on the address pointer defined in element 7
to fetch payload data from S_MEM.

For CAN FD:

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 127 | 306
Element |Bit Name Managed |Description/Constraints
Number (field by

e SIZE > 1: The copy of the first data payload
(aligned on 32bit) is required in element 6. The
address pointer in element 7 is used to fetch the
payload data from S_MEM.

e SIZE = 1: The copy of the first data payload
(aligned on 32bit) is required in element 6. In
case it is less than 4bytes, just pad with 0s. The
address pointer in element 7 is not used.
Nevertheless, it is required to have it set to the
address of the payload data in S_ MEM

e SIZE=0: Elements 7 and 6 are not used

[)

[15:13] |IN[2:0] SW only Instance Number: define the X_CAN instance number

using that descriptor. This bit field is relevant if several

X_CAN are running concurrently. It provides a way to

detect descriptor fetch issue between instances. The

value defined must be equal to the one defined in the

MH_CFG.INST_NUM bit field register.

[12] Not Used SW only Must be setto 0

[11:2] |TDO[9:0] SW only For the TX Priority Queue: must be set to 0.

NHDO[9:0] |SW only For the TX FIFO Queue: must be set to 1.

[2:0] Not used SW only Must be set to 0

2 [31:0] |TSO[31:0] MH only Timestamp 0: LSB of the 64bits timestamp of the
successfully sent TX message (only valid when HD bit is
set to 1)"

3 [31:0] |TS1[31:0] MH only Timestamp 1: MSB of the 64bits timestamp of the
successfully sent TX message (only valid when HD bit is
set to 1)"

4 [31:0] |TO[31:0] SW only Define the TX message header information, see TX
message header definition chapter

5 [31:0] |T1[31:0] SW only Define the TX message header information, see TX
message header definition chapter

6 [31:0] |TDO[31:0] SW only Classical CAN and CAN FD: define the first payload of

the TX message

T2[31:0] SW only CAN XL: Defined the TX message header information,
see TX message header definition chapter

7 [31:0] |TD1[31:0] SW only Classical CAN with payload greater equal to 4byte:
define the last payload data of the TX message for the
Classical CAN (in case payload data is greater than
4bytes).

TX_AP[31:0] |SW only CAN XL and CAN FD (with payload greater than 4bytes):
Address pointer to fetch the TX message payload data

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 128 | 306
Element |Bit Name Managed |Description/Constraints
Number (field by

for CAN FD and CAN XL frames. For CAN FD frames with
more than 4 bytes this bit field is, nevertheless,
mandatory. As the address pointer must be 32bit
aligned the two LSB will not be considered and so must
be set to 0 all time. In case the TX_AP is not used it
must be set to 0

Table: TX Descriptor description
Here is the list of the required elements for the various TX descriptor definitions to be managed by the
SW or the MH:

SW to write information |SW to read information from
to MH MH
Element) .
Header Descriptor Header Descriptor
Number
0 Mandatory Mandatory
1 Mandatory Mandatory
2 NA Mandatory
3 NA Mandatory
4 Mandatory NA
5 Mandatory NA
6 Mandatory NA
7 Optional NA

Table: TX Descriptor Element managed by SW

MH to write information to | MH to read information
SW from SW
Element .)
Header Descriptor Header Descriptor

Number

0 Mandatory Mandatory

1 Mandatory Mandatory

2 Mandatory NA

3 Mandatory NA

4 NA Mandatory

5 NA Mandatory

6 NA Mandatory

7 NA Optional
Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 129 | 306

Table: TX Descriptor Element Managed by MH
1.4.5.5.4TX Descriptor CRC Computation

A dedicated CRC is computed for every TX descriptor. When a CRC error is detected, the DESC ERR
interrupt signal is triggered. This way, the data transfer setting and description, up to the DMA engine,
are fully protected.

The CRC covers all the relevant data, meaning the 247bit data (8*32bit - 9) in the TX descriptor
considering the CRC bit field in the descriptor as equal to 0b0O00000000. The CRC is part of the
Element Number 0.

The CRC (CRC-9_167) is computed assuming the following elements in sequence:

Element Number 0[31:25] & ObO00000000 & Element Number 0[15:0]

Element Number 1[31:0]

Element Number 2[31:0] set to 32’b0

Element Number 3[31:0] set to 32’b0

Element Number 4[31:0]

Element Number 5[31:0]

Element Number 6[31:0]

Element Number 7[31:0]

The Koopman representation of the polynomial CRC-9_167 is used to protect TX descriptors:
CRC-9 167 = (x2? +x7 +x8 +x3 +x2 +x +1) * (CRC polynomial in implicit "+1" hex format, meaning the
trailing "+1" is omitted from the polynomial number)

Using the MH_SFTY_CTRL.TX_DESC_CRC_EN bit register, the SW can decide to disable this check for
all the TX descriptors fetched from S_MEM or L_MEM.

Here below is the pseudo code to compute the CRC for a TX/RX descriptor:

The word _table[] is the array of 32bit element defined previously (in the order they are listed):
static bit[8:0] rem9 = 9'h1FF;

static bit[8:0] rem9 old = 9'h1FF;

static bit[8:0] poly = 9'h167;

static bit[8:0] crc9;

// This algorithm is indirect
// initialize CRC shift register

rem9 = 9'h1FF;
foreach (word_table[i]) begin
for (intj=31;j >=0; j--) begin

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 130 | 306

// to decide whether reduction with polynomial will be required based on MSB before shift
rem9 old = rem9;

// shift out MSB of CRC
rem9 =rem9 << 1;
rem9[0] = word_tableli][j];

// perform reduction if required
if (rem9_old[8]) rem9 = rem9 * poly;
end
end

// processing 9 Os more

repeat(9) begin
// to decide whether reduction with polynomial will be required based on MSB before shift
rem9 old = rem9;

// shift out MSB of CRC
rem9 = rem9 << 1;
rem9[0] = 0;

// perform reduction if required

if (rem9_old[8]) rem9 = rem9 * poly;
end
crc9 = rem9;

1.4.5.5.5TX Descriptor Errors

When a TX descriptor error is detected, the relevant information is logged in the DESC_ERR_INFO1
register. Furthermore, the source address of the faulty TX descriptor is logged in the
DESC_ERR_INFOO register. This would help the SW to identify potential root causes when such error
occurs. The DESC_ERR_INFO1.RX_TX bit register is set to O when a TX descriptor gets an error.

1.4.5.6 TX Message Header Definition

The TX descriptor contains i.e., the TX message header. The header data structure depends on the
CAN Frame Format (Classical CAN, CAN FD, CAN, XL) to be used for this message on the CAN Bus. It
can be controlled by the header bits RO.FDF, RO.XLF and RO.XTD. The following tables describe the
three data structures used for the headers.

Table: Classical CAN TX Header definition

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN
Tn Bits Name Description/Constraints
TO [31] FDF FD Format
[30] XLF XL Format
[29] XTD Extended ldentifier
[28:18] | BaselD [28:18] |Base ID
[17:0] ExtID [17:0] |Extended ID
T1 [31] Reserved Not Applicable
[30] FIR Fault Injection Request
[29:27] Reserved Not Applicable
[26] RTR Remote Transmission Request
[25:20] Reserved Not Applicable
[19:16] DLC[3:0] Data Length Code
[15:0] Reserved Not Applicable

I
131 | 306

Note: Classical CAN frames (CBDF, CEDF, CBRF, CERF) require TO.FDF = 0 and TO.XLF = 0. The header
consists of TO and T1.

Table: CAN FD TX Header definition

Tn Bits Name Description/Constraints
TO [31] FDF FD Format
[30] XLF XL Format
[29] XTD Extended ldentifier
[28:18] | BaselD [28:18] |Base ID
[17:0] ExtID [17:0] |Extended ID
T1 [31] Reserved Not Applicable
[30] FIR Fault Injection Request
[29:27] Reserved Not Applicable
[26] |Must be set to O0|Not Applicable
[25] BRS Bit Rate Switch
[24:21] Reserved Not Applicable
[20] ESI Error State Indicator
[19:16] DLC[3:0] Data Length Code
[15:0] Reserved Not Applicable

Note: CAN FD frames (FBDF, FEDF) require TO.FDF = 1 and TO.XLF = 0. The header consists of TO and

T1.
Table: CAN XL TX Header definition
Tn Bits Name Description/Constraints
TO [31] FDF FD Format
[30] XLF XL Format

Version 3.9
28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN
Tn Bits Name Description/Constraints
[29] XTD Extended Identifier
[28:18] |Priority ID[28:18] |Priority identifier
[17] RRS Remote Request Substitution
[16] SEC Simple Extended Content
[15:8] VCID[7:0] Virtual CAN Network ID
[7:0] SDT[7:0] SDU Type
T1 [31] Reserved Not Applicable
[30] FIR Fault Injection Request
[29:27] Reserved Not Applicable
[26:16] | DLC-XL[10:0] |Data Length Code with CAN XL encoding
[15:0] Reserved Not Applicable
T2 [31:0] AF[31:0] Acceptance Field

I
132 | 306

Note: CAN XL frames (XLFF) require TO.FDF = 1, TO.XLF = 1 and TO.XTD = 0. The header consists of TO,

T1 and T2.

1.4.5.7 RX Descriptor

The RX descriptor definition for the RX FIFO is defined in table below. Only 4x32bit are required to
define an RX descriptor. As a matter of fact, the overall RX descriptor can be fetched with one burst.

Some bit field elements are defined in a separate table for the sake of simplicity.

1.4.5.7.1 RX FIFO Queue Descriptor Overview (Normal Mode)

Table: RX FIFO Queue Descriptor Overview (Normal Mode)

RX FIFO QUEUE [24:16
DESCRIPTOR 31 30 29 28 27 | 26 | 25]. [15:12] [11:9] [8:4] [3:0]
(Normal Mode)
s =) =) - = m
-g [e] [e] g 8 1) -lg
g b = = = % - £ .t = &
al o o g 2 2 G S 3 S 3 =
) =; oD > > e} = ®, O 5 2 & 2 < O D oo
DMA info Ctrl 1 = « - e o - [8) Zz @ E = 9 O W o 8
> & 9 =z 9 T g T 3 z Q2 Q £ = 9
(0] S 3 (@] [= P = n o
= = = s o o =
~ <) o - c o' >
[a) b4 b4 = - =
I =
RX_AP[31:0]
RX_AP .
(RX Address Pointer)
TS0[31:0]
TSO)
(TimeStamp[31:0])
Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 133 | 306

TS1[31:0]
(TimeStamp[63:32])

TS1

Managed by SW and
HW

1.4.5.7.2 RX FIFO Queue Descriptor Overview (Continuous Mode)

Table: RX FIFO Queue Descriptor Overview (Continuous Mode)

RX FIFO QUEUE (2416
DESCRIPTOR | 31 30 29 28 27 | 26 | 25]' [15:12] [11:9] [8:4] [3:0]
(Normal Mode)
g ~| =5 _ . = — 0
el g| °© e 2 g g £
2 2 o 2 b = = S - 1S S — O
+ + o b = IS (&1
| Sl 28 & 28 o & | 8| 5J8| 22 3 8 S G
DMA info Ctrl 1 = S o o| W 45| = el [8) =z 1 E = 9 O W o 3
> 83 8 % 7 3 o oI 2 z c g £ R
L 2| S =) © w z T = w g
= T‘u o) = - é *‘7; o =
= - [S)) [S) = c [=<
o =4 =4 = ~ =
I ~
RX_AP[31:0]
RX_AP
(RX Address Pointer)
TS0[31:0]
TSO
(TimeStamp[31:0])
TS1[31:0]
TST
(TimeStamp[63:32])
Managed by SW and
HW
1.4.5.7.3 RX Descriptor Description
Element |Bit N Managed |Description/Constraints
ame
Number [field by
0 [31] VALID SW/MH |Valid: The SW must set this bit to 0 to define a RX

descriptor is pointing to a valid data container. As soon as
the RX descriptor is executed the MH will set this bit to 1
to indicate to the SW valid data written to the S_MEM. In
case the RX descriptor is fetched with this bit set to 1

and interrupt RX FQ_/RQ is triggered to the system for
the RX FIFO Queue having this non valid descriptor.

The SW must clear this bit only when all the RX message

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 134 | 306
Element |Bit N Managed |Description/Constraints
ame
Number |field by

data attached have been read

[30] HD MH only |Message header: when set to 1 the RX descriptor is
defined as containing the header of the RX message. Any
other RX descriptor, if several descriptors are used for
the same RX message, will contain only payload data.

In Continuous Mode HD is always set to 1 as only one RX
descriptor is used per RX message

[29] reserved SWonly |Must be setto0

[28] NEXT MH only |Next: Set to 1 by the MH to indicate in the RX Header
descriptor that more than one descriptor is used for the
RX message. This information is only mentioned in the
Header Descriptor, the RX Trailing Descriptors are not
modified. This allows the SW to acknowledge only the RX
Header Descriptor for any RX messages.

In Continuous Mode NEXT is always set to 0 as only one
RX descriptor is used per RX message

[27] IRQ SW only |[Interrupt: when set to 1, an interrupt is triggered to the
system when the descriptor execution is complete and a
correctly received RX message was written to it. This
interrupt can provide to the SW, a synchronization point
to monitor the RX FIFO Queue execution

[26:25] |Not Used SW only |Must be set to 0

[24:16] |CRC[8:0] SW only |CRC: this CRC is computed by the SW for the current RX
descriptor. It must consider all elements assuming this
bit field as set to 0. Any CRC error is triggering an
interrupt to the system. The CRC is not evaluated if the
MH_STS.RX_DESC_CRC_EN bit is set to 0.

[15:12] [FQN[3:0] SW only |RX FIFO Queue number: define the RX FIFO Queue
number allocated to this RX descriptor

[11:9] |IN[2:0] SW only |Instance Number: define the X_CAN instance number
using that descriptor. This bit field is relevant if several
X_CAN are running concurrently. It provides a way to
detect descriptor fetch issue between instances. The
value defined must be equal to the one defined in the
MH_CFG.INST_NUM bit field register.

[8:4] RC[4:0] SW only |Rolling Counter: use to track the order of RX descriptor
fetched when a RX FIFO Queue is running. When a RX
FIFO Queue is started for the first time, its First RX
descriptor must have the RC[4:0] set to 5’b00000. This
value must be incremented for every new RX descriptor

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 135 | 306
Element |Bit N Managed |Description/Constraints
ame
Number |field by

up to 5’b11111 and then back to 5’b00000 and so on.
Even if a wrap occurs at the end of the RX FIFO Queue
(circular RX FIFO Queue), the first RX descriptor of that
FIFO must be updated with the correct RC[4:0] value.
Thus, the First RX descriptor RC[4:0] value needs to be
updated by incrementing the value defined in the
previous descriptor. To always have RC[4:0] = 5’b00000
for the First RX descriptor (in case of circular RX FIFO
Queue), the RX FIFO Queue size must be a multiple of 32
RX descriptor

[3:0] STS[3:0] MH only |[Status: gives the status of the RX message received. This
bit field is written back by the MH when the descriptor
has been completed. This bit field must be set to 0 by
SW.

0’b0000: none

0’b0001: message received successfully

0’b0010: message received but not filtered

0’b0011: reserved

0’b0100: reserved

0’b0101: reserved

0’b0110: reserved

0’b0111: reserved

0’b1000: reserved

0’b1001: reserved

0’b1010: reserved

0’b1011: reserved

0’b1100: reserved

0’b1101: reserved

0’b1110: reserved

0’b1111: message acknowledge data with parity error

1 [31:0] |RX AP SW/MH Normal Mode: the SW defines the address of the RX data
container to write RX data

Continuous Mode: The SW must set this bit field to 0 as
default value. The MH writes this field with the address
pointer to find the RX message attached to the RX
descriptor. Only the RX Header Descriptor is having this
bit field updated, with the RX message address in the
data container.

This address must be 32bit aligned, the two LSB bits are
assumed to be always 0

2 [31:0] |TSO[31:0] MH only |Timestamp O: LSB of the 64bits timestamp of the

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 136 | 306
Element |Bit N Managed |Description/Constraints
ame

Number |field by
successfully received RX message (only valid when HD bit
is setto 1)"

3 [31:0] |TS1[31:0] MH only |Timestamp 1: MSB of the 64bits timestamp of the
successfully received RX message (only valid when HD bit
is setto 1)"

Table: RX Descriptor description
Here is the list of the required elements for the various RX descriptor definitions to be managed by
the SW or the MH:

SW to write information to MH SW to read information from MH
Element . Header Trailing Descriptor
RX Descriptor .
Number Descriptor
Mandatory Mandatory in Normal mode
0 Mandatory
1 Mandatory in Normal mode Mandatory Mandatory in Normal mode
NA in Continuous mode (must be set to 0)
2 NA (must be set to 0) Mandatory NA (must be equal to 0)
3 NA (must be set to 0) Mandatory NA (must be equal to 0)

Table: Element managed by SW

MH to write information to SW MH to read information from SW
Element) Trailing)
Header Descriptor . RX Descriptor

Number Descriptor

0 Mandatory Not updated Mandatory

1 Not updated in Normal mode Not updated Mandatory in Normal mode

Mandatory in Continuous mode NA in Continuous mode
2 Mandatory Not updated NA
3 Mandatory Not updated NA

Table: Element managed by MH
When the Element Number is mentioned as NA, the assumed default value must be 0.

1.4.5.7.4 CRC Computation

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 137 | 306

A dedicated CRC is computed for every RX descriptor. When a CRC error is detected, the DESC ERR
interrupt signal is triggered. This way, the data transfer setting and description, up to the DMA engine,
are fully protected.

The CRC covers all the relevant data, meaning the 55bit data in the RX descriptor considering the CRC
bit field in the descriptor as equal to 0b000000000. The CRC is part of the Element Number 0.

The CRC (CRC-9_167) is computed assuming the following elements in sequence:

Element Number 0[31:25] & O0bO00000000 & Element Number 0[15:0]

Element Number 1[31:0]

The Koopman representation of the polynomial CRC-9_167 is used to protect RX descriptors:
CRC-9 167 = (x2 +x7 +x8 +x3 +x2 +x +1) * (CRC polynomial in implicit "+1" hex format, meaning the
trailing "+1" is omitted from the polynomial number)

Using the MH_SFTY_CTRL.RX_DESC_CRC_EN bit register, the SW can decide to disable this check for
all the TX descriptors fetched from S_MEM.

The Pseudo code of indirect CRC algorithm is available in TX Descriptor chapter under CRC
computation section.

1.4.5.7.5 RX Descriptor Errors

When a RX descriptor error is detected, the relevant information is logged in the DESC_ERR_INFO1
register. Furthermore, the source address of the faulty RX descriptor is logged in the
DESC_ERR_INFOO register. This would help the SW to identify potential root causes when such error
occurs. The DESC_ERR_INFO1.RX_TX bit register is set to 1 when a RX descriptor gets an error.

1.4.5.8 RX Message Header Definition

Messages received from the CAN Bus are stored in the S_ MEM, each consisting of a header followed
by the payload. The header data structure depends on the CAN Frame Format (Classical CAN, CAN FD,
CAN, XL) used for this message on the CAN Bus. It can be identified by the header bits FDF and XLF.
The following tables describe the three data structures used for the headers, consisting of the words
RO, R1 and R2.

Rn Bits Name Source |Description/Constraints
RO [31] FDF CAN |FD Format

[30] XLF CAN |XL Format

[29] XTD CAN |Extended ldentifier

[28:18] | BaselD [28:18] CAN |Base ID

[17:0] ExtID [17:0] CAN |Extended ID
R1 | [31:27] na na reserved
[26] RTR CAN |Remote Transmission Request

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN
Rn Bits Name Source |Description/Constraints
[25:20] na na reserved
[19:16] DLC[3:0] CAN |Data Length Code
[15:11] na na reserved
Filter Aborted: when set to 1, the RX filtering
[10] FAB MH process was ending before completing with no
match
Black List: When set to 1, the RX message filtered
9] BLK MH belongs to a blacklist
Filter Match: When set to 1 one of the filter
[8] FM MH |elements (defined by FIDX[7:0]) has detected a
match
Filter index: provide the information of the filter
[7:01 FIDX[7:0] MH index which has been triggered
R2 | [31:0] na na reserved

Table: Classical CAN RX Header definition
Note: Classical CAN frames (CBDF, CEDF, CBRF, CERF) can be identified by RO.FDF = 0 and RO.XLF =

I
138 | 306

0.
Rn Bits Name Source |Description/Constraints
RO [31] FDF CAN |FD Format
[30] XLF CAN XL Format
[29] XTD CAN |Extended ldentifier
[28:18] | BaselD [28:18] CAN |Base ID
[17:0] ExtID [17:0] CAN |Extended ID
R1 | [31:26] na na reserved
[25] BRS CAN |Bit Rate Switch
[24:21] na na reserved
20 ESI CAN |Error State Indicator
[19:16] DLC[3:0] CAN |Data Length Code
[15:11] na na reserved
Filter Aborted: when set to 1, the RX filtering
[10] FAB MH |process was ending before completing with no
match
Black List: When set to 1, the RX message filtered
9] BLK MH belongs to a blacklist °
Filter Match: When set to 1 one of the filter
[8] FM MH |elements (defined by FIDX[7:0]) has detected a
match
Filter index: provide the information of the filter
[7:0] FIDX[7:0] MH index which Eas been triggered
R2 | [31:0] na na reserved
Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN

Table: CAN FD RX Header definition
Note: CAN FD frames (FBDF, FEDF) can be identified by RO.FDF = 1 and RO.XLF = 0.

Rn Bits Name Source |Description/Constraints
RO [31] FDF CAN |FD Format
[30] XLF CAN |XL Format
[29] na na reserved
[28:18] |Priority ID[28:18]| CAN |Priority identifier
[17] RRS CAN |Remote Request Substitution
[16] SEC CAN |[Simple Extended Content
[15:8] VCID[7:0] CAN |Virtual CAN Network ID
[7:0] SDT[7:0] CAN |SDU Type
R1 | [31:27] na na reserved
[26:16] DLC-XL[10:0] CAN |Data Length Code with CAN XL encoding
[15:11] na na reserved
Filter Aborted: when set to 1, the RX filtering
[10] FAB MH |process was ending before completing with no
match
Black List: When set to 1, the RX message filtered
9] BLK MH belongs to a blacklist °
Filter Match: When set to 1 one of the filter
[8] FM MH |elements (defined by FIDX[7:0]) has detected a
match
Filter index: provide the information of the filter
[7:0] FIDX[7:0] MH index which has been triggered
R2 | [31:0] AF[31:0] Acceptance Field

Table: CAN XL RX Header definition
Note: CAN XL frames (XLFF) could be identified by RO.FDF = 1 and RO.XLF = 1.

1.4.5.9 TX Message

For a better understanding while reading this chapter, read the TX descriptor chapter first.

A TX message is defined using one TX descriptor and a TX data container where the payload data

buffer is defined.

I
139 | 306

The Header Descriptor (or the only one, in case of one descriptor per message) holds the header data

information and for some CAN protocols, the data payload of the message. Such descriptor also
provides some additional information to the MH: the interrupt to be triggered, where to write

acknowledge data, where to fetch TX message data, etc.

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 140 | 306

A TX data container is a general term to name the memory space allocated by the SW. This data
container is used to hold the payload data buffer. In most of the cases, this TX data container would
be identical to the data buffer size to transmit, avoiding the loss of memory space.

A specific TX descriptor is used for the TX FIFO Queue and for the TX Priority Queue due to the
structure of the two different implementations.

In order to optimize the fetch of the TX descriptor as well as data payload, a maximum burst length of
8x32bit is used.

The buffer size which can be defined in a TX descriptor can go up to 2048byte. This way, a TX message
can be defined using a single TX descriptor and one data buffer.

As the maximum efficiency is reached when using the maximum burst length, it is highly
recommended to define a data buffer size aligned on the maximum burst length.

If the TX payload data is not a multiple of the burst length, the remaining data in the data container
won’t be read. Nevertheless, the embedded DMA controller will use the maximum burst length to read
the payload whenever possible and will adapt the latest burst length to complete its transfer. Only the
relevant data are read from S_MEM when smaller than the maximum burst length.

The address pointer used to fetch the payload data is always 32bit, despite that payload data is byte
aligned.

Every TX descriptor holding the header of the TX message, once a TX message is transmitted, is
acknowledged for status, error reporting and timestamping.

Here below are the different types of messages according to CAN protocols.
1.4.5.9.1 Single TX descriptor Usage

A TX message can be defined using one single TX descriptor. This kind of choice requires to have the
complete payload data defined in one data container in the S_ MEM. In case of Classical CAN, the
complete Classical CAN message is embedded in the TX descriptor. This means no payload buffer is
required for Classical CAN messages. The NEXT bit in TX descriptor must be set to 0. In case of a TX
Priority Queue, the TX descriptor TDO bit field must be set to 0. For the TX FIFO Queues, the NHDO is
set to a value equal to 1 in order to define the next TX header descriptor.

For the TX Priority Queue and TX FIFO Queue the same description below applies.

Classical CAN with up to 8byte payload

As the Classical CAN payload data is only 8byte, it can be defined completely in the TX descriptor (see
TDO and TD1). There is no need to define an address pointer to a payload buffer in that case. Despite
a data container is mentioned, it is not used. This is to align with the other description in the next
sections.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 141 306

This approach provides a single and simple way to send any Classical CAN TX message in a
straightforward manner. Using the TO, T1, TDO and TD1 in the TX descriptor, the overall Classical CAN
message can be defined, refer to the TX descriptor chapter for more details.

Element 0

. El t1

TX Data Container el
Element 2: TSO

TDO . Element 3: TS1

Element 4: TO

Buffer|

TD1

Element5: T1
Element 6: TDO
Element 7: TD1

Figure: Classical CAN TX message with 8byte payload (single descriptor)

CAN FD

As the CAN FD protocol can provide up to 64byte, it is mandatory to define an address pointer to read
the payload data from the S_ MEM when the size is greater than 4byte. The first payload data defined
in the payload data buffer also needs to be defined in the TX descriptor. For high latency system, the
time to fetch the payload data, once the arbitration process is complete, can lead to a potential
underrun. To solve this issue, TDO is declared in the TX descriptor. By the time TDO is sent through
the CAN bus, the payload data will be read from the S_MEM. This approach avoids prefetching the
payload data before having the arbitration result and to throw away the complete burst when
arbitration is not successful. The TDO from the first read burst access will then be skipped.

The address pointer points to the buffer holding the overall payload data as depicted in figure below.
In case only 4byte payload data is required, there would be no need to define the address pointer
(must be set to 0). For payload data above 4byte an address pointer is required. The minimum data
container size is either 32byte (data payload lower or equal to 32byte) or 64byte (data payload
greater than 32byte).

The size of the buffer to be fetched is always 32bit aligned. When the data payload is lower than a
multiple of 32bit, padding is expected and will be discarded by the PRT.

Using the TO, T1, TDO and the TX_AP fields, the overall CAN FD TX message can be defined, refer to
the TX descriptor chapter for more details.

TX Data Container Element 0
Element 1
S < S
101 ETmentt 4 TO
b2 Element 5: T1
5 D3 ement 5:
£ T Element 6: TDO
0 Element 7: TX_AP

TD15 |

TDm-1 |

Figure: CAN FD TX message with more than 4byte payload (single descriptor)
CAN XL

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 142 | 306

As the CAN XL header information requires 3 words of 32bit, there is no payload data defined in the
TX descriptor. T2 is required only when the arbitration on the CAN bus is successful, giving time for
the MH to read the payload data from the S_ MEM and to avoid the need of prefetching data.

Using the TO, T1, T2 and the TX_AP fields, the overall CAN XL TX message can be defined, refer to the
TX descriptor chapter for more details.

The size of the buffer to be fetched is always 32bit aligned. When the data payload is lower than a
multiple of 32bit, padding is expected and will be discarded by the PRT.

TX Data Container

TDO <

TD1 Element 0

- TD2 Element 1
£ TD3 Element 2: TSO
@ T Element 3: TS1
H Element 4: TO
TDn-1 | Element5: T1
| Element 6: T2

Element 7: TX_AP

Figure: CAN XL TX message (single descriptor)
1.4.5.10 RX Message in Normal Mode

Prior to reading this chapter, read the RX descriptor chapter first.

In order to receive RX messages, an RX descriptor is required to define how the MH must behave and
where to write the RX data in Normal mode.

Those RX descriptors are attached to RX FIFO Queues which are selected according to the RX filtering
rules. It means, RX descriptors are concatenated and read in sequence.

An RX data container is a general term to name the memory space allocated by the SW. This data
container is used to hold the RX message data. In most of the cases, this RX data container would not
be fully filled with data, maximum data payload being different for CAN protocols.

Every RX descriptor is assigned to a data container to write incoming data to the S_MEM. The RX data
container size is a multiple of the maximum burst lengths supported, 8x32bit with a maximum of
4064byte (127*32byte) and a minimum of 32byte. This granularity does provide some flexibility to
address several RX messages sizes with only one data container. As defined previously, if an RX data
container is smaller than an RX message, several RX descriptors will be assigned to that message.

Compared to the TX message, the header and the payload of the RX message are written together to
the S_MEM. This approach gives the flexibility to pass address pointers of the overall message to the
application and to avoid copies.

If the payload data does not cover a multiple of the burst length, some data won’t be written to the
data buffer in the container. The embedded DMA controller will use the maximum burst length

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 143 | 306

whenever possible to write header and payload and will adapt the latest burst length to complete its
transfer.

The address pointer used to write the RX message is always 32bit aligned despite payload data is byte
aligned.

The size of the data container defined into the RX descriptor is fixed for a given RX FIFO Queue and
for all the RX descriptors of that queue. The smaller the size of data buffer the less RX descriptors a
message would require.

As the data container is defined anywhere into the S_ MEM, the SW can decide to allocate all the data
containers into a continuous way in the S_MEM to ensure, the RX message is not split over several
location. It will ease the reading of RX messages and simplify the management of data buffers, see RX
FIFO Queue chapter for more details.

The NEXT bit defined into the RX Header Descriptor provides the information to the SW that one or
several RX descriptors are used. On top of it, the RX Header Descriptor of an RX message will have the
HD bit set to 1 to indicate that the data container got the header of the message.

Only the RX Header Descriptor holding the header data is acknowledged when an RX message is
received. This way, despite receiving the timestamp at the end of the data received, it will be written
with the header and status reporting.

Here below are the different types of RX messages according to the CAN protocol and some different
structures when using one or several RX descriptors.

1.4.5.10.1 Single RX Descriptor

With this structure, the size of the data container defined by the RX descriptor must be large enough
to hold the maximum payload size of the expected RX message to receive.

Classical CAN

As depicted in the figure below, the Classical CAN header and payload data can be directly written
into a 32byte data container (N = 1). If such data buffer size is defined, then several RX descriptors
would be required to support CAN FD (3 RX descriptors) or CAN XL (65 RX descriptors). It is
important to note that, according to the RX message size received, it may be possible to have message
data written in a bigger data container as every RX FIFO Queue defines its own data container size.

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

y
X_CAN 144 | 306

RX Data Container
(N * 32byte)

Element O
RO < Element 1: RX_AP
RRDlo Element 2: TSO
RDI Element 3: TS1

Figure: Classical CAN RX message (single descriptor)

CAN FD

Compared to the Classical CAN, a larger data buffer is required to hold up to 64byte of payload data
and the header message data. In this case, a data container of 96byte (N = 3) is allocated to support
CAN FD frame format. There will be no issue regarding Classical CAN message as it would fit entirely
into the same data container. Doing so, the CAN XL message can be supported but would require up
to 22 RX descriptors.

RX Data Container
(N * 32byte)

Element 0

< Element 1: RX_AP
Element 2: TSO
Element 3: TS1

RD1

]

———

Figure: CAN FD RX message (single descriptor)

CAN XL

To ensure that only one RX descriptor points to one CAN XL RX message, it is possible to allocate a
data container size of more than 2048byte (N=65). With this setting, all the different CAN protocols
are covered with a single data container per RX descriptor. However, quite some memory space is lost
in the data container (when configure to support CAN XL payload size) when receiving Classical CAN
or CAN FD messages. To solve this issue, multiple RX descriptors can be used, see next chapter.

RX Data Container
(N * 32byte) Element 0

Element 1: RX_AP
Element 2: TSO
Element 3: TS1

Figure: CAN XL RX message (single descriptor)

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 145 | 306

1.4.5.10.2 Multiple RX Descriptor

To optimize the memory usage, regardless of the payload size of the RX message received, several RX
descriptors can be assigned to one RX message. Doing so, the RX message is written in several data
containers. When one is full, the RX message data is going to the next one. As depicted in the figure
below, for a given size of data container (constant per RX FIFO Queue), the RX message can be
written anywhere into the S_MEM. The MH takes care of filling the right data container with the RX
message data whenever required. As a fixed memory allocation is defined per RX descriptor, the RX
message data may be spread over several data containers and RX descriptors (depends on RX
message payload data).

The figure below shows three RX descriptors and their assigned data container to hold the entire RX
message. If a data container has a size of 96byte (N=3) and a CAN XL message payload of 270byte is
received, then the RX message is depicted in figure below. Although the CAN XL message, in this
example, is split over several RX descriptors, this configuration allows to support Classical CAN and
CAN FD with only one RX descriptor.

RX Data Container
(N * 32byte)

RO «
R1
R2
RDO
RD1 Element O
' Element 1: RX_AP
RD20 | Element 2: TSO
Element 3: TS1
] Element O
RX Data Container —Element 1. RX_AP
(N * 32byte) Element 2: Not used
RD?1 < Element 3: Not used
RD22 Element 0
RD23 — Element 1: RX_AP
RD24 Element 2: Not used
Element 3: Not used
RDm |

RX Data Container
(N * 32byte)

RDm+1
RDm+2
RDm+3

A

CAN RDn-1

Figure: RX message (multiple descriptors)

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 146 | 306

1.4.5.11 RX Message in Continuous Mode

Prior to reading this chapter, read the RX descriptor chapter first.

For a better understanding of that section please also read the RX Message in Normal mode chapter.
In the Continuous mode, the RX messages, instead of being split over several data containers (see RX
Message in Normal mode chapter), are merged in the same big data container one after the other.

As depicted below only a single data container is defined per RX FIFO Queue and one RX descriptor is

used per RX message.

RX Data Container
(N * 32byte)

RO <«

R1 I— Element 0
RDO Element 1: RX_AP
RR%]' < Element 2: TSO

R1 Element 3: TS1

R2 Element O
RDO Element 1: RX_AP
RD1 Element 2; TSO

: Element 3: TS1
RD28 Element 0
2oz —I Element L. RX_AP
RD30
RD31 Element 2: TSO
RD32 Element 3: TS1
RDm

RDmM+1

RDm+2

RDr'n+3
CAN RDn-1

RO «

R1
RDO
RD1
RDn-1

Figure: RX message (Continuous Mode)

The Continuous mode makes use of the already defined RX descriptor list to support the SW
management of RX messages, see RX message Normal mode for more details.

It is important to note that the Continuous mode applies to all RX FIFO Queues when set. There is no
option to make it available only to some queues.

The RX descriptors are attached to a defined RX FIFO Queue. The RX FIFO Queue, to write the RX
message, is defined according to the RX filtering rules, see RX Filter chapter for more details. Once
the RX FIFO Queue is identified, the latest RX descriptor (meaning the current one) is fetched from
S_MEM. As the RX descriptors in a given FIFO Queue are concatenated, they will be read in sequence
up to the end of the RX message.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 147 | 306

Every RX descriptor is assigned to only one RX message in this large data container. This data
container size is a multiple of the maximum burst lengths supported, 8x32bit with a maximum of
131040 byte (4095*32byte) and a minimum of 32byte. Every RX FIFO Queue has its own data
container (defined by a start address and a size).

The header and the payload of the RX message are written one after the other to the S_MEM. This
approach gives the advantage to have the complete RX message data available in one place in the
S_MEM. A copy of the RX message in the S_MEM can then be easily defined by a start address and a
size.

Whenever it is possible, the embedded DMA controller uses the maximum burst length to write header
and payload data and will adapt the latest burst length to complete its transfer.

The address pointer, used to write the RX message, is always 32bit aligned despite payload data is
byte aligned.

The data container is defined anywhere in the S_MEM. Being defined as a 32bit address pointer, it can
be defined in a 4G byte memory area.

The NEXT bit defined in the RX Descriptor will never be set, as only one RX Descriptor is used per RX
message. The RX Descriptor pointing to the RX message has the HD bit set to 1 as it is a Header
Descriptor. No Trailing Descriptors are used for such mode, only one TX descriptor is required, and it
is a Header Descriptor.

Only the RX Header Descriptor holding the header data is acknowledged when an RX message is
received, considering the Normal mode. The same applies for the Continuous mode, see RX message
in Normal mode chapter for more details.

Compared to the Normal mode, there is no trade-off to consider regarding the different CAN protocol
payload data size. As the RX messages are written in a row, no loss of memory is expected in the data
container assigned to an RX FIFO Queue.

This mode will also ensure that RX data are always linearly and continuously written in the S_MEM. At
the beginning of the reception of an RX message header, a check is performed to ensure the RX data
to be received can fit entirely in the data container. As the RX message cannot be written at the
bottom and at the top of the data container, the MH will go to the start address of the data container
before writing the first data. This would provide to the SW an easy way to perform memory copy, as
one start address, and a size can define the overall RX message.

1.4.5.12 Descriptor Acknowledgement

For the TX and RX paths, the MH is providing data information back to the RX and TX Header
Descriptor.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 148 | 306

To do so, some place holders are defined in the RX and TX descriptors for the MH to write RX and TX
message status, timestamping and error reporting.

As the CAN bus is not a full duplex interface, there shouldn’t be any collision on the acknowledge of
RX and TX descriptors, with the exception of the PRT when in loopback mode. In such mode, all TX
messages transmitted by the MH are send back by the PRT to the MH, refer to the PRT chapter for
detailed description of the loopback.

The process of acknowledgement is completely separated from the reception or transmission of a CAN
frame, a dedicated DMA channel is reserved for such purpose.

1.4.5.12.1 RX Descriptor

For the RX path, one or several RX descriptors can be used to hold the complete RX message. Once an
RX message is received successfully, an acknowledgement is written back to the Header Descriptor
when the message is completed. If several descriptors are used per message (Trailing Descriptors),
they are not changed by the MH. If the data container assigned to the RX descriptor is sized in such a
way that any RX message can fit in entirely, then every RX descriptor (in fact Header descriptors in
that case) will be acknowledged.

If several RX descriptors are used to store the RX message and an issue occurs while processing the
message, all RX descriptors already used are then released for the next RX message.

Here below is the list of bit fields used by the MH to provide the acknowledgement information to the
RX Header descriptor, see RX Descriptor chapter for details:

¢ VALID: The MH expected this bit to be set to 0 by the SW to ensure the data container is
ready to be written again. This bit is written by the MH to 1, when an RX message is
received successfully, and the data are available in S_MEM. It is true only for the RX
descriptor holding the RX message header data

¢ TSO[31:0] and TS1[31:0]: The MH writes the 64bit timestamp (TSO and TS1) in the RX
descriptor when the RX message data is received successfully. Only the RX descriptor
holding the data will have this bit field updated.

e NEXT: As soon as more than one RX descriptor is required for an RX message, the MH sets
this bit to 1. Only the RX Header descriptor will have this bit field updated. The Trailing
descriptors are not updated. When using the Continuous mode, this bit is always set to O.

e HD: In case several RX descriptors are used to define an RX message, the MH sets this bit to
1 to identify which descriptor has the message header embedded into its data buffer.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 149 | 306

e STS[3:0]: This bit field gets updated by the MH for any usage of RX descriptor. It provides
information on the status of the RX message and on any related issue while RX FIFO
Queues are running

1.4.5.12.2 TX Descriptor

For the TX path, once a TX message is processed, the TX Header Descriptor is written back with the
relevant information. The list of conditions to trigger an acknowledge is defined below:

Message sent successfully

Message rejected by the TX filter (see TX Filter chapter)
Message discarded after several re-transmission

Message rejected by the PRT (see HFI codeword in PRT chapter)

Here below is the list of bit fields used by the MH to provide the acknowledgement information to the
TX descriptor, see TX Descriptor chapter for details:

e VALID: The MH expected this bit to be set to 1 by SW to ensure the data buffer is ready to be
sent, only the TX descriptors having this bit set to 1 are accepted and executed. This rule
applies for every TX descriptor with or without the header data (when TX message is split
over several descriptors). When the last data defined by this TX descriptor has been sent
over the CAN bus, it will be set back to 0 by the MH only to the TX descriptor holding the
header data.

¢ TSO0[31:0] and TS1[31:0]: When the TX message data is sent successfully, a 64bit timestamp
is written back into to the TX descriptor holding the header data

e STS[3:0]: This bit field gets updated by the MH for any usage of TX descriptor. It provides

information on the status of the TX message and on any related issue while TX FIFO Queues
are running

1.4.5.13 TX FIFO Queue

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

y
X_CAN 150 | 306

TX FIFO QUEUE

TX Data Container

Buffer: = ~ Descriptor Linked-List
Linear memory space =
used by a descriptor 103

TD6 address register

Buffer

DL m First Descriptor :
Element 0 . .
I Descriptor defined by the TX FIFO Queue
Element 2: TS0 start address
Element 3: TS1
Element 4: TO -
TX Data Container Element 5: T1 Head Descriptor:
. Element 6: T2 i i
Cpntalner: o7 L e Descriptor holding the header of the TX
Linear memory f D1 message
space assigned £ =
. o
to one descriptor lgg L__|Current Descriptor:
Descriptor executed by the MH
o2
w
[a)]
o
- o
TX Data Container z
5 756 le - 44— o Next Descriptor: _
3 TD1 le = P o 2 Descriptor to be used as next in
: § the current TX FIFO Queue
ﬁ ' £
A
|
|
TX Data Container :
o R I |
N B !
a V7 AR l
L= -
BT DR
Z
=] -
4 Element 2,750 Last Descriptor :
Element 3: TSL The last descriptor defined into
Elemendi 0 the TX FIFO Queue
[Element 5: T1
Element 6: TDO
Element 7: TDL AV

CAN-FD TX Message *
Classic CAN TX Message .
CAN-XL TX Message Not Defined

Figure: TX FIFO Queue description

Up to 8 TX FIFO Queues can be defined and managed by the MH.

When the SW wants to configure N TX FIFO Queues, only the queue number from 0 to N-1 can be
used.

A TX FIFO Queue is a list of TX messages to be sent in order to the PRT.

Each one being fully independent from the others, the SW can declare and add new messages to any
of the FIFO Queue without stopping the execution of the others or the current one. In this sense, the
TX FIFO Queues can be enabled or disabled individually. An abort mechanism is provided to stop and
flush each TX FIFO Queue individually.

Prior to launch any TX FIFO Queue, the MH must be started (MH_CTRL.START written to 1 will drive
the MH_STS.BUSY bit status to 1). To start the TX FIFO Queue n, write 1 to the
TX_FQ_CTRLO.START[n]. Before launching a TX FIFO Queue n, it must be enabled by setting the
TX_FQ_CTRL2.ENABLE[nN] bit to 1. Once enabled and started, there is no way to disable it while it is

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 151 | 306

running without a defined procedure. Instead, the abort bit TX_FQ_CTRL1.ABORT[n] provides a way to
stop a TX FIFO Queue n running and to ensure a safe stop and flush of ongoing data. For more detail
on starting and stopping TX FIFO Queues, refer to the Application Information chapter.

To ensure no dead lock can occur at start, the ENABLE signal from the PRT must be set to 1, to allow
any TX FIFO Queue to start. This signal status can be monitored in the MH_STS.ENABLE bit field.

There is also nothing preventing the SW to declare and run a TX FIFO Queue with a defined list of TX
messages, assuming an interrupt at the end of the TX FIFO Queue execution.

However, the TX FIFO Queue can be used as a circular buffer when the Last Descriptor defines a wrap
to the First Descriptor (WRAP bit set to 1 in TX descriptor). Doing so, the SW can add new messages
in an endless manner over time.

The mechanism, used to manage TX FIFO Queues, is based on the concept of linked list. Any TX FIFO
Queue is defined using a linked list of TX descriptors and data buffers to read TX message payload
from the S_ MEM.

A linked list is made of descriptors, where a descriptor is defined by several data elements of the
same size, the element is a 32bit word. Each element provides some information or would define
some actions to perform. A descriptor is built by the SW but will be read and executed by the MH.

Every TX descriptor is of the same size, pointing to a data buffer and also to the next descriptor, as
depicted in the figure above. The TX descriptors are continuous in memory (to ease and simplify
implementation). Therefore, it is not required to declare or use a bit field to mention the position of
the next descriptor as it is implicit.

The linked list is started by fetching the First Descriptor in the list, once it is fully read, it is executed
and the data buffer assigned to it, is read. Other actions can be defined into the element data like
triggering an interrupt or setting a flag. The linked list is processed one descriptor at a time, once a
descriptor is complete, the next one is fetched into the list and the process repeats itself. The process
keeps going up to the Last Descriptor of the linked list and from this point in, may end or may wrap to
the first descriptor in a circular buffer mode.

Every TX FIFO Queue defines its own order of TX messages to be send to the CAN bus, but as several
queues are running concurrently, an arbitration process is performed between queues to select the
highest priority message. Every TX message is filtered to ensure only the required ones can be sent.
The SW builds those queues with messages and the MH takes care of sending them whenever
appropriate.

For the TX FIFO Queues, data buffers hold the payload data of the TX message while the descriptor
defines header information. In some cases, the first payload data may also be part of the Head
Descriptor.

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 152 | 306

To give a status report and some information like timestamping, the MH is also able to write back
some elements in the TX descriptors. Not all of them are written back but only the one having the
Header Descriptor data are updated.

It is possible to wrap at the top of the TX FIFO Queue any time but with the following constraints:

e The WRAP bit must be set in the Header Descriptor to identify where the next TX message is

located

The descriptors are mainly defined on SRAM as they drive the actions to be taken. Nothing prevents
the SW to declare and use the E_MEM instead but it can slow down the execution and may create real
time issues. However, the data buffers can be either in E_MEM, which is usually the case, or in SRAM.
As a matter of fact, if the next descriptor cannot be fetched before the relevant data are fully read or
written, the linked list execution speed would depend on the data access time. To solve this issue,
outstanding reads are performed to hide the system latency whenever possible.

TX Data Containers can be defined at any location in S_MEM. But for performance reason and to
optimize the burst access, it is highly recommended to have the TX buffer 32byte aligned. Those
containers are considered as memory space that is allocated by the Memory Management Unit to store
buffer. Once a message is sent, the container can be deallocated, so the memory space is released for
further usage.

As soon as the TX FIFO Queue is started, the MH will fetch the First Descriptor and store it to L_MEM.
When the TX descriptor is available in L_MEM, it will be part of the arbitration process. As long as the
TX message defined by this TX descriptor is not sent to the CAN bus, it will remain for all the
arbitration runs. When it is sent successfully, the next TX descriptor of that TX FIFO Queue is fetched
automatically.

The MH will proceed with all TX FIFO Queues in the same way. As the TX message to be sent is based
on its priority, the TX FIFO Queues will run at a different rate up to the point that all TX messages are
sent successfully.

If the Last Descriptor of a TX FIFO Queue sets the END bit, the MH will end the FIFO execution as
soon as the TX message defined is transmitted successfully on the CAN bus and the TX descriptor
acknowledge is written to the S_MEM.

Up to 1023 TX descriptors can be defined for a TX FIFO Queue. When the maximum number of TX
descriptor defined for a TX FIFO Queue is reached, the MH wraps automatically to its initial start
address to fetch the next TX descriptor. Despite this default behavior, it is still possible at any time for
the SW to mention a wrap using the WRAP bit in the Header Descriptor.

When the END bit is not set for the last TX descriptor, the TX FIFO Queue is considered as endless,
and any new TX descriptor can be appended to the already defined last descriptor. To allow such way
of working, the last descriptor must always be not valid (VALID bit set to 0). This is very important as
the detection of the non-valid TX descriptor triggers an interrupt to the system to declare that the TX

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 153 | 306

FIFO Queue is stopped. It would then be up to the SW to append a new TX descriptor and restart the
TX FIFO Queue.

If for some reasons a TX FIFO Queue has an error, it is still possible to abort the execution of that TX
FIFO Queue. When such action is performed, the TX FIFO Queue will be considered as active as long

as the current data transfer assigned to a TX descriptor is not finished. This means, the TX descriptor
is not considered for the arbitration anymore, so no more fetches are done, and the TX FIFO Queue is
set inactive.

Any safety issue related to a TX descriptor executed by a TX FIFO Queue will stop it right away. The TX
FIFO Queue is declared as no more valid and is stopped. To identify such issue, some interrupts are
triggered to the system, 7X CRC EFRR and TX SFTY STS. Despite that the faulty TX FIFO queue is
stopped, the others will keep going.

If a message has reached maximum number of re-transmissions or has declared an invalid header
format, the message is skipped and the next one in the TX FIFO Queue is considered instead. The
error mentioning such skip is written back to the report status bit field in the TX Header Descriptor.

In a context where a TX descriptor provides the definition of one TX message, the next TX message is
the next TX descriptor, an offset of 1 (1x32byte) is required.

A TX FIFO Queue n is controlled and monitored using several registers and bit registers:
e The TX_FQ_START_ADD{n} (n € {0, 1, 2, ..., 7}) register to define the start address of the TX
FIFO Queue n
e The TX FQ_CTRLO.START[n] (n € {0, 1, 2, ..., 7}) register to launch the TX FIFO Queue n
e The TX_FQ_SIZE{n} (n € {0, 1, 2, ..., 7}) register to define the maximum number of TX
descriptor for the TX FIFO Queue n before looping back to the initial start address

e The TX FQ_ADD PT{n} (n € {0, 1, 2, ..., 7}) register to monitor the current address pointer of
the TX FIFO Queue n

e The TX_DESC_ADD_PT register to monitor the current address pointer

e The TX_FQ_CTRL1.ABORT[n] (n € {0, 1, 2, ..., 7}) bit register to abort the execution of the TX
FIFO Queue n

e The TX_FQ_CTRL2.ENABLE[n] (n € {0, 1, 2, ..., 7}) bit register to enable the TX FIFO Queue n
prior to use it

e The TX_FQ_INT_STS.SENT[n] and TX_FQ_INT_STS.UNVALID[n] (n € {0, 1, 2, ..., 7}) bit
registers to identify respectively, a message is transmitted, and an invalid TX descriptor is
detected

e The TX_FQ_STS0.BUSY[n] and TX_FQ_STS.STOP[n] (n € {0, 1, 2, ..., 7}) bit registers to know
respectively, the status of the TX FIFO Queue n, busy (TX FIFO Queue is active) and
stopped or running

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 154 | 306

e The TX_FQ_STS1.ERROR[n] and TX_FQ_STS.UNVALID[n] (n € {0, 1, 2, ..., 7}) bit registers to
identify the root cause of the TX FIFO Queue being stopped, an error is detected, or an
invalid TX descriptor is detected

A TX FIFO Queue is being controlled for any issue using common bit registers when receiving
interrupts:
e The SFTY_INT_STS.TX_DESC_CRC_ERR and SFTY_INT_STS.TX_DESC_REQ_ERR bit registers to
identify respectively, any CRC issue on TX descriptor running in the TX FIFO Queue n and
non-expected TX descriptor

e The ERR_INT_STS.DP_TX_ACK_DO_ERR bit register to identify overflow on TX ACK data path
for the TX FIFO Queues

e The ERR_INT_STS.DP_TX_SEQ_ERR bit register to identify if an issue occurs on the TX_MSG
interface

1.4.5.13.1 Basic Mode

The SW defines one TX descriptor per TX message payload data. Thus, a TX message would be:
e One TX descriptor to provide the complete header information
e One TX data container to hold the complete TX message payload data (only required for CAN
FD and CAN XL when payload data is over 8byte)

Data containers holding the TX payload buffer can be declared anywhere in the S_ MEM despite being
attached to only one TX descriptor, as depicted in the figure below.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN

TX FIFO QUEUE

TX Data Container

S TDO €
2 TDL g

E—

Element 1

TX Data Container

TDO J

feo e]
TD1

TD2

TD3
TD6

Buffer

Element 0
Element 1

Element 0

et I |

Tx linked-list start
address register

Element 2: TSO
Element 3: TS1
Element 4: TO
Element 5: T1
Element 6: T2
Element 7. TX_AP

Element 2: TSO
Element 3: TS1
Element 4: TO
Element 5: T1
Element 6: TDO
Element 7: TX_AP

Element 2: TSO
Element 3: TS1
Element 4: TO
Element 5: T1
Element 6: TDO

TX Data Container

TD1
TD2
TD3
TD4
TD5

Buffer

ﬁ

TDO [

=
| I======7

Element 0
Element 1

CAN-FD TX Message
Classic CAN TX Message
CAN-XL TX Message

Element 7: TX_AP

Element 2: TSO

Element 6: TDO

Element 2: TSO
Element 3: TS1
Element 4: TO
Element 5: T1
Element 6: TDO
Element 7: TD1

loocoooomoomeomomommmoo e oo o)

Descriptor Linked -List

PROCESSED IN ORDER

Figure: TX FIFO Queue (Basic Mode)

y
155 | 306

This approach provides less constraints on system as only one TX descriptor needs to be fetched per
TX message. It would be much more efficient in terms of performance and memory allocation,

regarding linked list descriptors.

The only constraint for such configuration would be the memory space allocated to the payload data.
As the CAN XL can support up to 2048 byte, the size of the data container to hold the complete
payload can be quite large.

1.4.5.14 TX Priority Queue

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 156 | 306
TX PRIORITY QUEUE
TX Data Container
(multiple of 32byte)
;E‘i’ €T Descriptor Slots
- TD2 (Up to 32)
£ TD3
) TX Priority Queue
TDm-1 A
Head Descriptor:
Descriptor holding the header of the TX
Container: TX Data Container message
Linear memory (multiple of 32byte) n
space assigned to |§ 50 == a
one descriptor = o M -} | é | |Current Descriptor:
i} | : = Descriptor executed by the MH
: L Element 6: TDO E
L Element 7: TD1 |
TX Data Container 3
(multiple of 32byte) S
/ Buffer: 5 e &
Linear memory space TDL
used by a descriptor TD2
o TD3
£ Element 3 TSL
7 Element 4: TO
TD15 Element 5: T1
Element 6: TDO
TDm-1 Element 7: TX_AP
N
CAN-FD TX Message
Classic CAN TX Message
CAN-XL TX Message

Figure: TX Priority Queue description
This kind of queue does not behave as the TX FIFO Queue, but the way messages are defined and how
the MH is reading the descriptor are identical.

A TX Priority Queue can be configured with a maximum of 32 slots.

When the SW wants to configure N TX Priority Queue slots, only the slot number from 0 to N-1 can be
used.

Every slot is assigned one TX message from a SW point of view. Every slot can be enabled/disabled
individually leaving the option to define any number of active slot or none in the SW. Compared to the
TX FIFO Queue, there is no order of execution. Any message defined in the TX Priority queue can be
selected and executed in any order, only the highest priority message is selected first. Those
messages are evaluated against the one currently in use in all TX FIFO Queues.

The same principle is used to define a TX message, meaning some TX descriptors and TX data buffers
to define a message. Like the TX FIFO Queues, data buffers hold the payload data of the TX message
while descriptor defines header information. In some cases, the first payload data may also be part of
the descriptor.

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 157 | 306

To give a status report and some information like timestamping, the MH writes back some bit field in
the TX Header Descriptor. This way the SW is able to track back TX messages sent and identify those
with issues.

The TX Priority Queue is using the same data path as the one defined and implemented for the TX
FIFO Queue.
The main difference between the two queues is:
e The Priority Queue is managed in any order. As soon as a slot over the 32 is available, a new
message can be defined

e The SW needs to trigger the MH to consider a new message in a slot

e The SW needs to read status register to identify which message has been sent
Prior to launch any TX FIFO Queue slot, the MH must be started (MH_CTRL.START written to 1 will
drive the MH_STS.BUSY bit status to 1). To start the TX FIFO Queue slot n, write 1 to the
TX_PQ_CTRLO.START[n]. Before launching a TX FIFO Queue slot n, it must be enabled by setting the
TX_PQ_CTRL2.ENABLE[N] bit to 1. Once enabled and started, there is no way to disable it while
running without a defined procedure. Instead, the abort bit TX_PQ_CTRL1.ABORT[n] provides a way to
stop a TX FIFO Queue slot n running and to ensure a safe stop and flush of ongoing data. For more
detail on starting and stopping TX Priority Queue slots, refer to the Application Information chapter.
To ensure that no dead lock can occur at start, the ENABLE signal from the PRT must be high to allow
any TX FIFO Queue to start. This signal status can be monitored in the MH_STS.ENABLE bit field.

As soon as one or several slots of the TX Priority Queue are started, the MH will fetch the relevant TX
descriptors defined at those locations and stores them in L_MEM. When the TX descriptors are
available in the L_MEM, they will be part of the arbitration process. As long as the TX messages
defined by those TX descriptors are not sent to the CAN bus, they will remain for all the arbitration
runs. It is important to note the TX FIFO Queue's messages are also part of this arbitration process.

When the TX message is sent successfully on the CAN bus and TX descriptor acknowledge is written to
S MEM, the TX Priority Queue slot is released and set inactive. A 7X PQ /RQ interrupt can be triggered
to the SW when the TX descriptor acknowledge is written to the S_MEM. The other option would be to
poll the corresponding status bit register, to identify when the transfer has completed. This last
approach requires much more CPU time compared to the interrupt one.

As the TX message to select is based on an arbitration process, the TX Priority Queue execution will
run at a different rate compared to the TX FIFO Queues. If TX messages are defined into the TX
Priority and have highest priority, they will go between TX FIFO Queues. The SW can add new
messages at any time when a slot is available.

If for some reason a TX Priority Queue slot n needs to be stopped, it is still possible to abort the
execution of that slot. When such action is performed, the TX Priority Queue slot n will be considered
as no more active. If the TX message assigned to this slot is already in progress to the CAN bus or has
been selected as the next message to be sent, it won’t be cancelled. By using a register status, it is
possible to identify if the slot aborted has been done before or after the sending of the TX message.

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 158 | 306

Any safety issue related to a TX descriptor executed by a TX Priority Queue slot is declared as no more
valid. This means, it will not be part of the arbitration process with the other slots but won’t prevent
the others to be executed. To identify such issue a 7TX DESC CRC ERRis sent to the system. Despite
this TX Priority Queue slot is stopped, the others will keep going with their own TX descriptors.

If some message doesn’t go through for the two following reasons, maximum number of restarts
reached or invalid header format, the message is discarded. The error status being detected is written
back to the TX descriptor holding the header data.

There is a way to keep track of the TX descriptors used for a given TX FIFO Queue, refer to the Trace
and Debug chapter.

A TX Priority Queue is controlled and monitored using several registers and bit registers:
e The TX_PQ_START_ADD register to define the start address of the TX Priority Queue
e The TX PQ_CTRLO.START[n] (n € {0, 1, 2, ..., 31}) bit register to launch the TX Priority Queue
slot n
e The TX PQ_CTRL1.ABORT[n] (n € {0, 1, 2, ..., 31}) bit register to abort the execution of the
TX Priority Queue slot n

e The TX_PQ_CTRL2.ENABLE[n] (n € {0, 1, 2, ..., 31}) bit register to enable the TX Priority
Queue slot n prior to use it

e The TX_DESC_ADD_PT register to monitor the current address pointer

e The TX PQ_STS0.BUSY[n] (n € {0, 1, 2, ..., 31}) bit register to know the status of the TX
Priority Queue slot n, either busy (TX Priority Queue Slot is having a TX message to send)
or not busy (Slot is no more active for reasons like message sent, safety issue, ...)

e The TX PQ_STS1.SENT[n] (n € {0, 1, 2, ..., 31}) bit register to know the status of the TX
message assigned to the TX Priority Queue slot n, either sent (TX message assigned to slot
n is sent) or not sent (potential reasons are safety issue, max re-transmission counter
reached, ...)

e The TX_PQ_INT_STSO0.SENT[n]/ TX_PQ_INT_STS1.SENT[n] and TX_PQ_INT_STSO.UNVALID[n]/
TX_PQ_INT_STS1.UNVALID[n] (n € {0, 1, 2, ..., 31}) bit register to identify respectively, a
message is transmitted, or an invalid TX descriptor is detected

A TX Priority Queue is being controlled for any issue using common bit registers:
e The SFTY_INT_STS.TX_DESC_CRC_ERR and SFTY_INT_STS.TX_DESC_REQ_ERR bit registers to
identify respectively, any CRC issue on TX descriptor running in the TX FIFO Queue n and
non-expected TX descriptor

e The ERR_INT_STS.DP_TX_ACK_DO_ERR bit register to identify overflow on TX ACK data path
for the TX FIFO Queues

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 159 | 306

e The ERR_INT_STS.DP_TX_SEQ_ERR bit register to identify if an issue occurs on the TX_MSG
interface

1.4.5.15 RX FIFO Queue in Normal Mode

RX FIFO QUEUE (Normal mode)

Descriptor linked-list start
address defined in register

RX Data Container |¢

N*32bytes - -
(ytes) First Descriptor:
RX Data Container Descriptor defined by the RX FIFO Queug
(N*32bytes) start address
RO <
R1 Head Descriptor:
Buffer: < RR;O Descriptor pointing to the RX data
Linear memory E RD1 : : : container holding the header data
AR R AR aes Descriptor Linked LISL
gescnptor in the = _ Elerlnf_mR t; = Descriptor Set:
ata container Iy : Group of one or more descriptors combineg
RX Data Container Element 3. Not used | to provide storage for one RX message
(N*32bytes) Element 0 I@ The leading descriptor of the set is called th
E:’“e"‘ ::ZR:EOAP I‘l Head Descriptor and the other descriptors
lement 2: e .
RX Data Container Element 3: TS1 | : are called the Trailing Descriptors
(N*SZbytes) El ElertnfntRi AP - l
lement 1:
RO, ——= L] L -
- o N E:::::: g :Z: :z:: H Current Descriptor:
= 3
@ B804 | Descriptor executed by the MH
RO Element 1. RX_AP 1
Element 2: TSO
i] Element 3: TSL : Next Descriptor:
Element 0 | & Descriptor to be used as next in
" Element 1: RX_AP “DJ
RX Data Container Slement 2 750 [the current RX FIFO Queue
(N*32bytes) Element 3 TSL | g
RO > Element 0 I E — -
RI Element 1: RX_AP [Trailing Descriptor:
g RDO Element 2: TS0 | 7 L IDescriptor holding only payload buffer
El RD1 Element 3: TS1 : 8 pointer
le]
RO | [
L
RX data container size : | . S
defined in register for the » RX D'rita Container [} | < Descriptor link list size
entire RX FIFO Queue (N*32bytes) [} | defined in register
RO < | |
RDi+2 [} |
g RDI+3 | |
a |
Element 0 '
RDm1 Element 1: RX_AP]
Element 2: TSO l
Element 3: TS1 l
Element 0]
— Element 1: RX_AP
= | -
RX Data Container Element 2: TSO Last Descriptor:
(N*32bytes) SENEE SIS 7 The last descriptor defined into
the RX FIFO Queue
Data Container: RX Data Container
Linear memory space (N*32bytes)
assigned to one RX RDi*1]
descriptor s RDi+2
The size defined is a
identical for all the RX RO
data container of one
RX FIFO Queue

Figure: RX FIFO Queue description (Normal mode)

Up to 8 RX FIFO Queues can be defined and managed by the MH.

When the SW wants to configure N RX FIFO Queues, only the queue number from 0 to N-1 can be
used.

An RX FIFO Queue is a list of RX descriptors pointing to an RX data container to store the RX
messages received by the PRT.

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 160 | 306

The RX filtering rules, programmed by the SW, define if a message is rejected or accepted. In case it is
accepted, it defines which RX FIFO Queue receives the message. If a message is rejected, it won’t
appear in any of the FIFOs. Each one being fully independent from the others, the MH appends new
RX message as they arrive on the CAN Bus.

The mechanism to manage RX FIFO Queues is based on the concept of linked list. Any RX FIFO Queue
uses a linked list of RX descriptors and RX data containers. Those containers are used to write the RX
message data to the S MEM and have fixed size over the entire RX FIFO Queue. A different size can be
defined per RX FIFO Queue but must always be a multiple of 32byte.

The size of the data container is programmable to store small or large RX message payload data, if
required. Up to RX_FQ_SIZE{n}.DC_SIZE[6:0] * 32byte data container size can be defined per RX
descriptor in an RX FIFO Queue n. As the size is programmable per RX FIFO Queue, it is then possible
to limit the memory footprint according to the expected message to be received.

A linked list is made of descriptors, where a descriptor is defined by several data elements of the
same size, the element is 32bit word. Each element provides some information or would define some
actions to perform. A descriptor is built by the SW but will be read and executed by the MH. Every
descriptor is of the same size, pointing to a data container and also to the next descriptor. The link
between descriptors is just a fixed offset, as they are continuous in memory (to ease and simplify
implementation). Therefore, it is not required to declare or use a bit field to mention the position of
the next descriptor as it is implicit (dashed lines). As data containers have a fixed size and the RX
message received may change in size, several descriptors can be required.

As messages are received in a continuous way, the RX FIFO Queue are used in a circular buffer mode.
This means when the Last Descriptor is reached, the MH will consider the First Descriptor as the next
descriptor. The Last Descriptor is defined by the size of the RX FIFO Queue and the start address of
the RX FIFO Queue.

An RX filter in the MH is used to accept or reject RX messages. If a message is accepted, it is then sent
to a defined RX FIFO Queue. The RX filter builds those queues over time with messages based on the
filtering result. It is up to the SW to read them in time.

The RX filter observes all the incoming RX messages to identify the right RX FIFO Queue. Once
defined, the first RX descriptor attached to the selected RX FIFO Queue is fetched and used to write
the incoming data to the S_ MEM. As soon as the incoming RX data increases above the limit of the
data buffer pointed by the current RX descriptor, a new one is fetched to keep going. This process
repeats up to last RX data received.

The MH will proceed with all the RX FIFO Queues the same way. As the RX FIFO Queue selected
depends on the RX filtering result, the RX FIFO Queues will be filled up at a different rate.

Prior to launching any RX FIFO Queue, the MH must be started (MH_CTRL.START written to 1 will
drive the MH_STS.BUSY bit status to 1). To start the RX FIFO Queue n, write 1 to the

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 161 | 306

RX_FQ_CTRLO.START[n]. Before launching an RX FIFO Queue n, it must be enabled by setting the
RX_FQ_CTRL2.ENABLE[n] bit to 1. Once enabled and started, there is no way to disable it while
running without a defined procedure. Instead, the abort bit RX FQ_CTRL1.ABORT[n] provides a way to
stop an RX FIFO Queue n running and to ensure a safe stop and flush of ongoing data. For more detail
on starting and stopping RX FIFO Queues, refer to the Programming Guidelines chapter.

It is essential to configure and start the relevant RX FIFO Queues before starting the PRT. When the
MH is not started and so no RX FIFO Queues are started, the MH will not accept any RX data, leading
to a PRT data overflow.

Each RX FIFO Queue can be managed individually, the SW can decide to enable or disable any queue
according to the way RX messages must be managed. Once the RX filter is defined and the PRT is
receiving messages, any change on the RX FIFO Queue setting is not possible. There is still a
mechanism to abort and flush an RX FIFO Queue while others are running.

Once a linked list is started and an RX message needs to be written inside, the first descriptor in the
list is read. It is executed and the data buffer assigned to it, is written. Other actions can be defined
into the element data like triggering an interrupt or setting flags. The linked list is processed one
descriptor at a time, if more RX descriptors are required for a given message, the next one into the list
is fetched and the process repeats itself. The process keeps going up to the last descriptor of the
linked list, a wrap will occur automatically at this time

If the size of the container is small, the RX message with few payload data may fit in but a larger one
would require several descriptors and containers. This approach optimizes the memory usage as the
number of containers used is very close to the effective size of the RX message received. However,
such strategy requires more descriptors and Data Containers.

If we consider the other way round, a large data container avoids splitting data buffers and limits the
number of descriptors. The main disadvantage would be the usage of more memory per descriptor.

This is up to the SW to find the best trade-off according to the CAN protocol and to the application
required. There is also the option to size the data container for every RX FIFO Queue differently,
leaving some flexibility of optimization.

Before receiving any RX message, the RX FIFO Queues must be started. In case some messages are
received and the RX FIFO Queue to write data is not active the RX message is rejected and an
RX ABORT_/IRQ interrupt is triggered to the system.

To give a status report and some information like timestamping, the MH is also able to write back
some elements in the RX or TX descriptors. Not all of them are written back but only the one having
the header data defined.

The same remark regarding TX descriptors and TX data buffer location into memory applies for the RX
descriptors and data buffers.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 162 | 306

The SW must always ensure that some RX descriptors in the RX FIFO Queue are always valid (VALID
bit set to 0). In case an RX descriptor is not valid, the RX FIFO Queue n is stopped and an interrupt
RX FQ /IRQis sent to the system. If the system provides a valid RX descriptor and restarts the RX FIFO
Queue n in time, the RX message may be written into memory, otherwise the message is rejected and
the interrupt RX FQ_/RQ is triggered to the system.

Up to 1023 RX descriptors can be defined for an RX FIFO Queue. The size of the RX FIFO Queue is
defined such a way when the Last Descriptor is reached, the MH wraps automatically to its initial start
address to get the First Descriptor.

If for some reasons an RX FIFO Queue has an error, it is still possible to abort the execution of that
FIFO Queue. When such action is performed, the RX FIFO Queue will be considered as active as long
as the current data transfer assigned to an RX descriptor is not finished. This means no more fetches
are done and the RX FIFO Queue is set inactive.

Any issue related to an RX descriptor executed by an RX FIFO Queue will stop it right away. To identify
such issue, some interrupts are triggered to the system, RX DESC CRC ERR or RX DESC REQ _ERR.
Despite this RX FIFO Queue is stopped, the others will keep going through their own RX descriptors.

An RX FIFO Queue is controlled and monitored using several registers and bit registers:

e The RX_FQ_START_ADD{n} (n € {0, 1, 2, ..., 7}) bit register to define the start address of the
RX FIFO Queue n

e The RX_FQ_CTRLO.START[n] (n € {0, 1, 2, ..., 7}) bit register to launch the RX FIFO Queue n

e The RX_FQ_CTRL1.ABORT[n] (n€ {0, 1, 2, ..., 7}) bit register to abort the execution of the
RX FIFO Queue n

e The RX_FQ_CTRL2.ENABLE[n] (n € {0, 1, 2, ..., 7}) bit register to enable the RX FIFO Queue
n prior to use it

e The RX_FQ_SIZE{n}.MAX_DESC and RX_FQ_SIZE{n}.DC_SIZE (n € {0, 1, 2, ..., 7}) bit register
to define respectively, the maximum number of RX descriptor before looping back to the
initial start address and the Data Container size for the RX FIFO Queue n

e The RX_FQ_ADD_PT{n} (n € {0, 1, 2, ..., 7}) register to monitor the current address pointer of
the RX FIFO Queue n

e The RX_FQ_STS0.BUSY[n] and RX_FQ_STS0.STOP[n] (n € {0, 1, 2, ..., 7}) bit registers to
know respectively, the status of the RX FIFO Queue n, busy (RX FIFO Queue is active) and
stopped or running or not started

e The RX_FQ_STS1.ERROR[n] and RX_FQ_STS1.UNVALID[n] (n € {0, 1, 2, ..., 7}) bit registers
to identify the root cause of the RX FIFO Queue being stopped, an error is detected, or an
RX descriptor is invalid

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 163 | 306

e The RX_FQ_INT_STS.RECEIVED[n] and RX_FQ_INT_STS.UNVALID[n] (n € {0, 1, 2, ..., 7}) bit
registers to identify respectively, a message is received, and an invalid RX descriptor is
detected

An RX FIFO Queue is being controlled for any issue using common bit registers:
e The SFTY_INT_STS.RX_DESC_CRC_ERR and SFTY_INT_STS.RX_DESC_REQ_ERR bit registers to
identify respectively, any CRC issue on RX descriptor running in the RX FIFO Queue n and
non-expected RX descriptor

e The ERR_INT_STS.DP_RX_ACK_DO_ERR bit register to identify overflow on RX ACK data path
for the RX FIFO Queues

e The ERR_INT_STS.DP_RX_FIFO_DOQO_ERR bit register to identify overflow on RX DMA FIFO for
the RX FIFO Queues

e The ERR_INT_STS.DP_RX_SEQ_ERR bit register to identify if an issue occurs on the RX_MSG
interface

1.4.5.15.1 Fragmented Data Container

The RX Data Container can be defined into any location and so an RX message is split across several
area in the S_MEM. With such approach, an address pointer is given to the application for any RX
message data, no copy is performed. A new Data Container is then allocated to replace the one being
sent to the application. It is important to note that in case of an RX message is received into several
Data Containers, several address pointers will need to be provided. It is assumed that Data Containers
that belongs to the same message can only be released once all RX buffer data have been read.

When the MH has executed the Last Descriptor (the descriptor defined at the latest position in the
Descriptor linked list), it wraps automatically to the First descriptor automatically.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN

RX FIFO QUEUE (Normal mode)

RX Data Container

RD++1

RDi+j+2

l€

Buffer

RDk-1

(N*32bytes)

—

RX Data Container

RO

RDO

Buffer

RD1

RDm-1

(N*32bytes)

RX Data Container e

(N*32bytes)

RX Data Container

RDi+1

A

RDi+2

RDi+3

RDi+4

Buffer

RDi+5

RDi+6

(N*32bytes)

RDi+]

RX Data Container L

(N*32bytes)

RX Data Contai
(N*32bytes)

ner

RX Data Container

Buffer

(N*32bytes)

RX Data Container

Descriptor Linked-List

Element 0
Element 1: RX_AP
Element 2: Not used
Element 3: Not used
Element 0
Element 1: RX_AP
Element 2: TS0
Element 3: TS1
Element 0
Element 1: RX_AP
Element 2: TSO
Element 3: TS1
Element 0
Element 1: RX_AP
Element 2: TSO
Element 3: TS1
Element 0
Element 1: RX_AP
Element 2: TSO
Element 3: TS1
Element 0
Element 1: RX_AP
Element 2: TSO
Element 3: TS1
Element 0
Element 1: RX_AP
Element 2: TSO
Element 3: TS1
Element 0
Element 1: RX_AP
Element 2: TSO
Element 3: TS1
Element 0
Element 1: RX_AP
Element 2: Not used
Element 3: Not used

PROCESSED IN ORDER

A

Buffer
)
o
by

(N*32bytes)
mi\r
3

RX Data Contai
(N*32bytes)

ner €

Figure: RX FIFO Queue in Normal Mode (Fragmented data containers)
In some cases, the RX message can then be split across RX descriptor being at the top and at the

y
164 | 306

bottom of an RX FIFO Queue. This mode does make use of all the RX descriptors defined in a given RX
FIFO Queue. It may happen that the SW would prefer to rely on linear RX message, having in mind a

linear organization of data containers in S_MEM, see Continuous data container chapter.

Versi

on 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN

1.4.5.15.2 Continuous Data Container

y
165 | 306

As the RX data containers of the same message are spread to different location in L_MEM, it won’t be
easy for the SW to read the entire message. To get around this issue, the SW can decide to declare
the RX Data Container in a linear memory area and to have them continuous to each other as depicted

below.
RX FIFO QUEUE (Normal mode)
RDi+j+1 [«
—_ :’ -
=0 |= RDi+j+2
geLi i
c .= $
asal i
x Y RDk-1
gy]
< ,—’—l Descriptor Linked-List
RX Data Container Element0 - i
(N*32bytes) Element 1: RX_AP |
" Element 2: Not used
RX Data Container Element3. Notused |
(N*32bytes) Element 0 :
. Element 1: RX_AP
RX Data Container Element 2: Not used I
(N*32bytes) Element 3: Not used :
. Element 0
RX Da:a Container Somen T RX A |
(N*32bytes) Element 2: TSO I
RO f—— Element 3. TSL |
—_ R1 Element 0 |
- &
Jol] 3 2 RDO Element 1: RX_AP [
© % 5|8 RD1 Element 2. TSO I a
oga Element3: TSL I |&
X & RDm-1
xr O« | Element 0 | z
Oz Element 1: RX_AP I o
Element 2: TSO | I-IWJ
= — Element 3: TS1 | m
Element 0
D s i Element 1: RX_AP : 8
5§ e[R £
E ce (2 RDL Element 2: TSO | [N
o) § g’ H Element 3: TS1 |
x € O'N') —RD.H'l—l Element 0 |
Y 8 *Z Element 1: RX_AP |
=3 H Element 2: TSO |
Element 3: TS1 |
RO <__| Element 0 |
N R1 Element 1: RX_AP |
gee| R2 Element2: TS0 |
8 T E‘ 2 RDO Element 3: TS1
x € o a2 RDL Element 0 J
x 8 . RD2 Element 1: RX_AP -
< | Element 2: Not used
RDi Element 3: Not used N4
RDi+1 <
[RD+2
g9 RDI+3
S22 R+
N |2 RDi+5
X S
¥ Q x RDi+6
oz
<
RDi+j

Figure: RX FIFO Queue in Normal Mode (Continuous Data Containers)

This way of managing the RX message will have the main advantage to provide an RX message written
in a linear memory area, despite being split in several data containers. The current RX message will
not be aligned right at the end of a data container. Thus, there will be free memory space in between

RX messages but this may be acceptable for a SW point of view.

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN

166 | 306

The only exception would be when the Last Descriptor is used, and the message size exceed the Data
Container. The MH wraps and uses the First Descriptor to keep going with the current RX message
data. In this particular scenario the RX message data is split over the top and the bottom of the data
container and the same applies for the linked list holding the RX descriptor. This is normal behavior,
and it must not be an issue for the SW to read the RX message following the RX descriptor list from

bottom to top.

This configuration provides a pseudo linearity for the RX messages in S_ MEM, excepted at the borders.
Doing so, the SW would need to perform a copy of the RX message data to free the memory area for
the new incoming messages. Such configuration does not require any update on address pointer in the
RX descriptors. Only the VALID bit needs to be written by the SW to acknowledge the reading of the

RX message and the update of the read address pointer register.

1.4.5.16 RX FIFO Queue in Continuous Mode

Descriptor link list start
address defined in register

First Descriptor:
Descriptor defined by the RX FIFO Queue
start address

Current Descriptor:
Descriptor executed by the MH

Next Descriptor:
Descriptor to be used as next in
the current RX FIFO Queue

Descriptor link list size
defined in register

Head Descriptors:
Descriptor pointing to the start address
of the RX message in data container

RX FIFO QUEUE (Continuous mode)
AT RX Data Container
ata Container s! &
address defined “ (N*32bytes)
register =
RL - - -
R2 Descriptor Linked-List
RDO -
RDL
RD2 Element0
& T Element 1: RX_AP' 1
E RDI-7 Element 2: TSO }
Data Container size RDI-6 Element3: TS1 4
defined in register > RDi-5 Element0 [}
RDI-4 Element 1. RX_AP 4 T
RDI-3 Element 2: Not used |
RDi-2 Element 3: Not used |
RDi-1 Element 0]
RO < Element 1: RX_AP |
K] R1 Element 2: Not used]
a RDO Element 3: Not used |
’ RD1 Element0
B,Uffer' — TR € Element 1: RX_AP : x
Linear memory R Element2: 750 |4
space used by a RX % [_Elementaitst ||
descriptor to write Element0 | c2>
RX data Element 1 RX_AP (=
Element 2: TSO | D
Element3: TS1 | %
L
I o
IR
Read address pointer > RO] Element 0 | =
defined by SW in R1 Element 1: RX_AP]
register RDO | Element2: TSO |
3 RDL Element 3: TS1 |
a Element0 |
Element 1: RX_AP |
Element2: TSO |
RDm-1 Element 3: TS1 |
RO <——| Element0 -
Data Container: RL Element 1: RX_AP :
Linear memory £ sgf E:e"‘e":§1 :‘; |
B lement 3:
space assigned to L i T |
all RX message R Element 1: RX_AP |
received by a RX Element2: TSO 4
FIFO Queue Element3: TS |
Element0 |
Element 1: RX_AP 1
Element 2: TSO 4 —
Element3: TS1

Figure: RX FIFO Queue in Continuous mode

Last Descriptor:
RX descriptor defined at the end
of the RX FIFO Queue

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 167 | 306

The same principle, that is defined in the RX FIFO Queue in Normal mode, applies for the RX
descriptors in this Continuous mode. The way they are used, managed, and defined remain the same,
see RX FIFO Queue in Normal mode chapter.

The main difference comes from the structure of the RX message data being stored in the S_MEM.

An RX FIFO Queue when in Continuous mode is a list of RX descriptors pointing to a large and single
data container to store all the RX messages received by the PRT.

The RX filtering rules, programmed by the SW, define if a message is rejected or accepted. In case it is
accepted or rejected, it is decided which RX FIFO Queue receives the message. If a message is
rejected, it won’t appear in any of the FIFOs. Each one is fully independent from the others. The MH
appends to RX FIFO Queues new RX message as they arrive on the CAN Bus. The RX filter builds those
queues over time with messages based on the filtering results. It is up to the SW to read them in time.

The mechanism to manage RX FIFO Queues is based on the concept of linked list. Any RX FIFO Queue
when in Continuous mode is defined using a linked list of RX descriptors and a large data container.

As messages are received in a continuous way, the RX FIFO Queue are used in a circular buffer mode.
This means, when the Last Descriptor is reached, the MH will consider the First Descriptor as the next
descriptor. The Last Descriptor is defined by the size of the RX FIFO Queue and the start address of
the RX FIFO Queue.

The RX filter observes all incoming RX messages to identify the right RX FIFO Queue. Once defined,
the current RX descriptor attached to the selected RX FIFO Queue is fetched and used to define the
new incoming RX message data.

The MH will proceed in the same way with all the RX FIFO Queues. As the RX FIFO Queue selected
depends on the RX filtering result, the RX FIFO Queues will be filled up at a different rate.

Every RX FIFO Queue can be managed individually, SW can decide to enable or disable any queue
according to the way RX messages must be managed. Once the RX filter is defined and the PRT is
receiving messages, any change on the RX FIFO Queue setting is not possible. There is still a
mechanism to abort and flush an RX FIFO Queue while others are running.

Once an RX FIFO Queue is started and an RX message needs to be written in its corresponding data
container, the First descriptor in the descriptor list is read. It is executed and the initial start address
of the data container assigned to it. The linked list processes one descriptor at a time every time a
new RX message is received by the same RX FIFO Queue. The process continues up to the Last
descriptor of the linked list before making a wrap.

Other actions can be defined in the RX descriptor, like triggering an interrupt or setting flags.

The MH writes messages as they arrive, to avoid overwriting. The SW needs to write the address value
of the current message being read to a MH register. Therefore, the MH can compute the exact memory
left to be used by the new RX message.

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 168 | 306

The size of the data container is programmable to store numerous CAN XL messages, if required. Up
to RX_FQ_SIZE{n}.DC_SIZE[11:0] * 32byte data container size can be defined for an RX FIFO Queue n.
As the size is programmable per RX FIFO Queue, it is then possible to limit the memory footprint
according to the expected message to be received.

Before receiving any RX message, the RX FIFO Queues must be started. In case some messages are
received and the RX FIFO Queue to write data is not active, the RX message is rejected and an
RX ARBORT_IRQ interrupt is triggered to the system.

To give a status report and some information like timestamping, the MH is also able to write back
some elements in the RX or TX descriptors. Not all of them are written back but only the one having
the header data defined.

The same remark, regarding TX descriptors and TX data buffer location into memory, applies for the
RX descriptors and data buffers.

The SW must always ensure that some RX descriptors in the RX FIFO Queue are always valid (VALID
bit set to 0). In case an RX descriptor is not valid, the RX FIFO Queue n is stopped and an interrupt
RX FQ /IRQis sent to the system. If the system provides a valid RX descriptor and restarts the RX FIFO
Queue n in time, the RX message may be written into memory, otherwise the message is rejected and
the interrupt RX FQ /RQ is triggered to the system.

In the Continuous mode, one RX descriptor is assigned to one message, thus, once the SW has read
the message in the data container, the VALID bit can be set to O right away. The SW must indicate to
the MH, using the RX_ FQ_RD_ADD PT{n} (n€ {0, 1, 2, ..., 7}) registers, the address pointer value of
the last word read from S_MEM. The MH uses this information to estimate if the incoming message
data can be written safely in the data container.

Up to 1023 RX descriptors can be defined for an RX FIFO Queue. The size of the RX FIFO Queue is
defined such that when the Last Descriptor is reached, the MH wraps to its initial start address to
fetch the First Descriptor. As the RX FIFO Queue size for the RX descriptors is defined at the first time
and cannot be changed once the RX FIFO Queue is started, the MH wraps automatically to keep going.

If, for some reasons, an RX FIFO Queue has an error, it is still possible to abort the execution of that
FIFO Queue. When such action is performed, the RX FIFO Queue will be considered as active, as long
as the current data transfers, assigned to an RX descriptor, are not finished. This means, there is no
pending transaction attached to the RX FIFO Queue, this includes the RX descriptor acknowledge
when a RX message is received. The RX FQ_/RQ interrupt is triggered to the system, if enable, once
the last RX message is received by the aborted RX FIFO Queue n.

Any issue related to an RX descriptor that is executed by an RX FIFO Queue will stop it right away. To
identify such issue, some interrupts are triggered to the system, RX DESC CRC ERR or

RX DESC REQ _ERR. Despite of having this RX FIFO Queue stopped, the other ones will keep going
through their own RX descriptors.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 169 | 306

An RX FIFO Queue is controlled and monitored using several registers and bit registers:
e Refer to the list of registers already defined for the Normal mode
e The RX_FQ_DC_START_ADD{n} (n € {0, 1, 2, ..., 7}) register to be written by the SW to
indicate to the MH the read address pointer in the data container for the RX FIFO Queue n

e The RX_FQ_STS2.DC_FULL[n] (n € {0, 1, 2, ..., 7}) bit register to identify the root cause of
the RX FIFO Queue being stopped, there is no space left on the S MEM to write new RX
data. This issue may occur only if the MH is set to Continuous Mode.

An RX FIFO Queue is being controlled for any issue using common bit registers:
e Refer to the list of registers already defined for the Normal mode

1.4.5.17 TX FIFO Queue Data Flow

The SW defines the TX descriptors for every TX FIFO Queues to be used and declares the TX data
buffers assigned to those TX descriptors.

As soon as the TX FIFO Queues are started, the TX MH will process and fetch all the relevant TX
descriptors and will store them in the L_MEM for arbitration.

Only the TX message with the highest priority ID is sent first. Those messages will compete against
the one defined in the TX Priority Queue. Only the TX descriptor holding the header data is written
back with status information of the data transfer and a timestamp. As soon as a TX descriptor, from a
TX FIFO Queue, is in use, the next one will be uploaded. The TX MESSAGE HANDLER manages the
request for a new descriptor on its own, whenever this is required.

The following data flow describes how the TX FIFO Queues are running in parallel.

Here are the different steps when a TX message is selected and/or used:

Step 1: After transmitting a TX message from the TX FIFO queue n, the TX MESSAGE HANDLER will
send a request to the DESCRIPTOR MESSAGE HANDLER for the next TX descriptor from that queue.

Step 2: The relevant TX descriptor of the TX FIFO Queue is fetched by the DESCRIPTOR MESSAGE
HANDLER and is written to the L_MEM.

Step 3: As soon as the new TX descriptor is completely written into the L_ MEM, an arbitration run is
performed. This arbitration will identify, which TX descriptor has the highest priority, looping through
the current TX descriptor for every TX FIFO Queues and through all the slots of the TX Priority Queue
declared as active. Once the two first candidates (Priority Queue slot number or TX FIFO queue
number) are defined, they are loaded in the TX MESSAGE HANDLER.

Step 4: The TX MESSAGE HANDLER then tries to upload the TX message with the highest priority
locally. If a TX message is in progress, the TX MESSAGE HANDLER will wait for the end of the current
transmission to read the complete TX descriptor from the L_MEM. If nothing prevents the upload of

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN

y
170 | 306

the next descriptor, it will be done right away. As soon as the TX descriptor is locally stored, the first
TX message data are sent to the PRT. The TX MESSAGE HANDLER will wait for the PRT to know if it
has won the arbitration process. As long as no new TX descriptor changes the arbitration result, the
selected TX descriptor remains in the TX MESSAGE HANDLER for further arbitrations. As soon as the

TX message is winning the arbitration, all the data contained into the TX descriptor are sent to the

PRT.

Step 5: The payload data assigned to the TX descriptor is fetched from the S_ MEM.
Step 6: If the TX message is sent successfully on the CAN bus, an acknowledge request is sent to the
DESCRIPTOR MESSAGE HANDLER with the status and information of the transfer. The DESCRIPTOR
MESSAGE HANDLER writes back the acknowledge of that descriptor in the S_MEM. When the
DESCRIPTOR MESSAGE HANDLER has finished writing the TX descriptor, an interrupt 7X FQ /RQ[n]
for the TX FIFO Queue n may be triggered to the system.

As all TX FIFO Queue are processed the same way, the data flow of only one TX FIFO Queue is
depicted in figure below with the reference number for each step.

Element7: TX_AP.

MESSAGE HANDLER I
DWANESSAGE o
HOST [RRNELER TD1/TD2
[] — 027103
CPU OMA WRITE DESCRIPTOR D3/ 104
1 CHANNEL 0 MESSAGE TD4/TDS
[1 HANDLER
[] 52
% 1 [eantonas]
CANTDn-1/
q' »| DMA READ
® z : o
CHANNEL 2
® b . 2
>] . TXD
P ovareno _I TXMESSAGE | = < PROTOCOL —
CHANNEL 1 HANDLER > CONTROLLER
=
Y
e et | v @
PR e e TXFIFO Queue
| : Descriptor linked -list @
l i Tx linkedHist start v -
1 TX Data Container || S — % TXFIFO Queue
] 00 et LOCAL < Descriptors
H i : o MEMORY 5
1| g — 1 Elementl CONTROLLER | > -
1| &l Element2: TS0 Elsment] g
1|2 [} Element3: TSL = TR 3
i oL | Elenent4Aing Element5: T1 =
| =] Elements: T1 [oo] E:E"‘e"'s iTD0 &
I 2 | Element6: T2 EromontT £ EE""::‘:“TODI
| B {ME loment7AD AR Element2: set0 0 Element 0 Eloment L =
| H Element0 = Rk Element1 Element4: T0 g
[} | Elementd fa] Element4: T0 Element4: TO Element5: T1 o
H ! E:emen:; 22 & Element5: 11 Element5: T1 Element6: T2 2
i LIl Element6: T2/ D0 Element 6: T2/ TDO T
: WSERCRIEDCY | E E Element7- TX_AP / TDL Element 7:TX_AP/TDL Element /i TxZAP
5 ement 2
Rk Tl_..-.«y Element 7: TDL I Current TX ooty 2
P [} E::::::g 2 Descriptor Element 4: TO H
] | T E T o Element 5: T1 &
l Element 3 751 Element6: TDO E
| - [} e Element7: TX_AP [
i TX Data Container || Element4; To oo
D0 e feep| Element6: TDO Eleinehtit
l D1 l |- Element 7. TX_AP y Element4: TO
| To2 \ = Il CPU read and write data path Elements: T1
I g | Il TX descriptor acknowledge write data path E‘E‘E"‘e:‘?;ip
D . . ement 7: TX_J
: B] [TX descriptor read and write data path
| H : AV Il TX message read payload data path
NE | [TX-Scan read data path ElEment!
] X Element 4 T0
| | [TX Header descriptor read data path Element 5 T1
|] Element6: TD0
|
|

TX FIFO Queue

S_MEM

Figure: TX FIFO Queue data flow

L_MEM

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 171 | 306

1.4.5.18 TX Priority Queue Data Flow

The SW defines the TX descriptors, that have to be sent to the TX Priority Queue slot and declares the
TX data buffers assigned to those TX descriptors. Once this is done, the SW triggers the TX MESSAGE
HANDLER to have those messages sent as soon as possible. Those messages will compete against the
one defined in the TX FIFO Queues. Only the ID is relevant for the selection of TX messages.

As soon as the TX Priority Queue slots are started, the TX MESSAGE HANDLER will process and fetch
all the relevant TX descriptors and will store them in the L_MEM for arbitration.

When a TX message is sent, an acknowledge (status information and timestamp) is written back to the
TX descriptor holding the header data. As soon as a TX descriptor is fully executed from a TX Priority
Queue slot, it will be considered as inactive and won’t be considered afterwards.

There is a way to keep track of the TX descriptors used for the TX Priority Queue, refer to the Trace
and Debug chapter.

The following data flow is relevant for all TX Priority Queue slots.

Here below are the different steps when a TX message is selected and/or used:

Step 1: To trigger the TX message defined in the TX Priority Queue, the SW must write the start bit of
the corresponding slot. Nothing prevents the SW to declare several TX messages at the same time and
to launch them at once. The TX MESSAGE HANDLER sends requests to the DESCRIPTOR MESSAGE
HANDLER for the TX descriptors to be fetched. If several TX descriptors need to be uploaded at once,
they would be fetched in the order of their slot number, starting with 0

Step 2: The relevant TX descriptors of the TX FIFO Queue is fetched by the DESCRIPTOR MESSAGE
HANDLER and is written to the L_MEM.

Step 3: As soon as the new TX descriptor is completely written to the L_MEM, an arbitration run is
performed and only the TX descriptor uploaded for the slot will be considered. This arbitration will
identify which TX descriptor has the highest priority, looping through the current TX descriptor for
every TX FIFO Queue and through all slots of the TX Priority Queue that are declared as active. This
selection is performed by doing a single read on all defined TX descriptor in the L MEM. Once the two
first candidates are identified, either the TX Priority Queue Slot number and/or the TX FIFO queue
number, they are stored locally in the TX MESSAGE HANDLER.

Step 4: The TX MESSAGE HANDLER then tries to upload the TX descriptor with the highest priority
locally. If a TX message is in progress, the TX MESSAGE HANDLER will wait for the end of the current
transmission to read from the L_MEM the complete TX descriptor. If nothing prevents the upload of
the next descriptor, it will be done immediately. As soon as the TX descriptor is stored locally, the
first TX message data are sent to the PRT. The TX MESSAGE HANDLER will wait for the PRT to get the
information if it has won the arbitration process. As long as no new TX descriptor changes the
arbitration result, the selected TX descriptor remains in the TX MESSAGE HANDLER for further

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 172 | 306

arbitrations. As soon as the TX message wins the arbitration, all the data contained in the TX
descriptor are sent to the PRT.

Step 5: The payload data assigned to the TX descriptor is fetched from the S_ MEM.

Step 6: If the TX message is sent successfully on the CAN bus, an acknowledge request is sent to the
DESCRIPTOR MESSAGE HANDLER with the status and information of the transfer. The DESCRIPTOR
MESSAGE HANDLER writes the acknowledge of that descriptor back to the S_ MEM. When the
DESCRIPTOR MESSAGE HANDLER has finished writing the TX descriptor, an interrupt 7X PQ_/RQ for
any of the TX Priority Queue slot may be triggered to the system. Once the acknowledge is written, the
slot is considered as invalid and won’t be used for the next arbitration run, up to the time, where the
SW sets it back to active.

As all the TX Priority Queue slots are processed the same way, the data flow of one slot is depicted in
the figure below with the reference number for each step.

T0
MESSAGE HANDLER 57
TT;O//T;’;
[™ | [Eemeni |
= Element1 DMA MESSAGE To1/T02
| 7oz |
LRSS MID2IATDS)
- TD3/TD4
[oescwron
HOST 1 DMA WRITE MESSAGE TD4 /DS,
— e FANDLER
S — @ m
<l [omarean I__ @
@ o« | CHANNEL 1
= O]
@ z | > oo || o7 PROTOCOL | TXD
T CHANNEL 0 TX MESSAGE b= —
L } »(CONTROLLER
HANDLER <
o
—
‘ @ @
TX Data Buffer TX Priority Queue slots of TX Priority Queue
descriptor 2 A L Descriptors
start address register] -
A .ml p REon LOCAL MEMORY < o p
00 e CONTROLLER []
@ D1 Element0 o = Element 5: T1 g
2 T02 Element L I s > Element6: TDO e
il 03 Element 2: TS0 Element7: TD1
s Element 3: TS1 Element0 »
2| Element4: T0 ElementL 3
e onT Element5: T1 Element 4: T0 2
£ Element6: T2 Element 5: T1 g
£ Element7: TX_AP. Element 6: T2 Z
3 Element0 [l Element0 Element 7: TX_AP.
Element1 - Element0 -.
Element 2: TS0 el Elomenc)
Element 3: TS1 > ElsTen4 A 2
D0 TS Z Element5: T1 Element L =
é' TD1 Element5: T1 = Element 6: T2/ TDO Element4: TO E
8 CANTDO o ST AT AT Element5: T4 <4
i CANTDL i Element6: TDO 2
‘)| =
I Element7: TX_AP T
(e] Element0
8 Element1 =
8 =0 I Element0 & Element 4: T0 5
2 L Element1 . Element 5: TL a
8 s ElementZ 750 Il CPU read and write data path
g wE i i Element7: TX_AP
H EISmEnfE AT I TX descriptor acknowledge write data path E
E 15 E::::::: :g [TX descriptor read and write data path
5 Element0
g g = CA':VTDT;J = Il TX message read payload data path el »
ement7: TX_J I 5
B momi] [TX-Scan read data path ElEME RN £
Up to 32 slots . Element 5: TL g
N [TX Header descriptor read data path Elements: TDO
Element 7:TX_AP.
TX Priority Queue

Figure: TX Priority Queue data flow
1.4.5.19 RX FIFO Queue Data Flow in Normal Mode

The SW needs to prepare the RX filter elements required to accept or reject RX messages. Once done,
the SW writes those elements to the L_ MEM. The SW cannot access this memory directly in write

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 173 | 306

mode through the HOST bus interface. As a consequence, the L_ MEM must provide a way to protect
the memory space allocated to the RX filtering elements from being read by any other masters.

The SW defines the RX descriptors for every RX FIFO Queue to be used and allocates the RX data
buffers assigned to those RX descriptors.

As soon as the RX FIFO Queues are started, any RX messages will be filtered, meaning rejected or
accepted, and are stored in the S MEM when required.

Here below are the different steps when receiving an RX message:

Step 1: As soon as the RX message data RO, R1 and R2 are received, the RX filtering is started. All the
incoming data are locally stored in the RX MESSAGE HANDLER, waiting for the result of RX filtering.
The RX MESSAGE HANDLER identifies RX FIFO Queue to be used

Step 2: The RX MESSAGE HANDLER sends an RX descriptor request to the DESCRIPTOR MESSAGE
HANDLER

Step 3: The relevant RX descriptor of the queue identified and fetched by the DESCRIPTOR MESSAGE
HANDLER is given to the RX MESSAGE HANDLER

Step 4: The RX MESSAGE HANDLER uses the address pointer of the RX descriptor to write the
message data to the S MEM as soon as a complete burst is available. As long as the data buffer can
accept message data, the process of writing can continue. In case that the last data can be written
into the data buffer pointed by the current RX descriptor, go to Step 6, otherwise the next RX
descriptor of the same queue is requested to the DESCRIPTOR MESSAGE HANDLER

Step 5: When the current RX descriptor is about to be completed, the new RX descriptor must be
available for the next DMA data transfer, hereby go to Step 3

Step 6: The RX MESSAGE HANDLER gets the status of the last part of the RX message and the
information of the latest data transfers. Those data are sent to the DESCRIPTOR MESSAGE HANDLER
to be written back as an acknowledge to RX descriptor in the S_MEM holding the header. The
timestamp and report status of the RX message are written at the same time. When the DESCRIPTOR
MESSAGE HANDLER has finished writing the RX descriptor, an interrupt RX FQ /RQ for the RX FIFO
Queue n may be triggered to the system

As all the RX FIFO Queues are processed the same way, the data flow of only one RX FIFO Queue is
depicted in figure below with the reference number for each step.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN

Eement 0

Element 1: RX AP

RDO/RDL

RDF2 /RO
1

Bement 1: RX_AP.

EBement 2: TSD.
EBement 3: TSL

DMA MESSAGE
HANDLER

[omawrite

® 2
L’ |
13) a |
HOST CPU 2 ®
Y T |
I
1l __y___
RX FIFO Queue data | 5
CERETES RX FIFO Queue
RX Data Container descriptor linked - list

RX Buffer

Rxinkedst start
address register

Bement 0
Bement 1: RX AP
Berment 2: TSO

RX Data Container
RX Buffer

’7 Bement 0

Bement 2: Not used
Bement 3: Not used

— EBement1: RX AP

Bement 2: TS0
Bement 3 TSL

Bement 0

Bement 1: RX AP
Bement 2: TS0

PROCE$SED IN ORDER

RX Data Container
RX Buffer

Bement 3: TS1

RX Data Container

RX Buffer
RO

RL
RDO
RDL

RX FIFO Queue

S_MEM

I CHANNEL 1

DMA WRITE
CHANNEL 0

DESCRIPTOR
MESSAGE
HANDLER

(o

a) ol

DMA READ
CHANNEL 0

MESSAGE HANDLER

RX MESSAGE
HANDLER

RO
RL
R2/RDO
RDO/RDL
RDL/R®
RD2/RD3
RD3/RDA4
RD4 [RD5

RDn-2 /RDvL
RDR/

PROTOCOL

T

LOCAL MEMORY
CONTROLLER

MEM| AXI

RX MSG

CONTROLLER

y
174 | 306

CAN_RX

Protected Area

Filter Elements and
References

Current RX
Descriptor

Filer Berent 0
Fiter Borent 1
Fiter Bement 2

Filer Berent P2

Reference Valie 1
Reference Mask 1

Reference Valie QL
Reference Nask Q1

Il CPU read and write data path

I RX descriptor acknowledge write data path
[RX descriptor read data path

Il RX message write data path

[RX Filter read data path

Figure: RX FIFO Queue data flow in Normal Mode

1.4.5.20 RX FIFO Queue Data Flow in Continuous Mode

Fiter Eement 0
Fiter Eement 1
Filer Bement 2

Filer Bement P2

Fiter Eement P-1

Reference Value 1
Reference Mask 1

Reference Value GL
Reference Mask Q1

L_MEM

The SW needs to prepare the RX filter elements required to accept or reject RX messages. Once done,
the SW writes those elements to the L MEM. The SW cannot access this memory directly in write
mode through the HOST bus interface. As a consequence, the L_ MEM must provide a way to protect
the memory space allocated to the RX filtering elements from being read by any other masters.

The SW defines the RX descriptors for every RX FIFO Queue to be used and allocates the single data
container for each of them.

As soon as the RX FIFO Queues are started, any RX messages will be filtered, meaning rejected or
accepted, and stored into the S MEM when required.

Here below are the different steps when receiving an RX message:

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 175 | 306

Step 1: As soon as the RX message data RO, R1 and R2 are received, the RX filtering is started. All the
incoming data are stored locally in the RX MESSAGE HANDLER waiting for the result of RX filtering.
The RX MESSAGE HANDLER identifies RX FIFO Queue to be used

Step 2: The RX MESSAGE HANDLER sends an RX descriptor request to the DESCRIPTOR MESSAGE
HANDLER

Step 3: The relevant RX descriptor of the queue identified and fetched by the DESCRIPTOR MESSAGE
HANDLER is given to the RX MESSAGE HANDLER

Step 4: The RX MESSAGE HANDLER holds the RX descriptor of that RX FIFO queue for further
purpose. In case the current RX message cannot fit in the remaining space of the data container, the
message is automatically written at the top (if possible). The message data are written to the S_ MEM
starting after the last RX message stored in the data container. As soon as a complete burst is
available, it is written, and this process continues up to the last RX message data.

Step 5: The RX MESSAGE HANDLER gets the status of the last part of the RX message and the
information of the latest data transfers. Those data are sent to the DESCRIPTOR MESSAGE HANDLER
to be written back as an acknowledge to the RX descriptor fetched earlier from the S_MEM. The
timestamp, the address of the RX message inside the data container and a report status of the RX
message are written at the same time. When the DESCRIPTOR MESSAGE HANDLER has finished
writing the RX descriptor, an interrupt RX FQ_/RQ for the RX FIFO Queue n may be triggered to the
system.

As all the RX FIFO Queues are processed the same way, the data flow of only one RX FIFO Queue is
depicted in the figure below with the reference number for each step.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN

w1
=
DMA MESSAGE R2/ RD0
HANDLER R [RoO/RDL |
DESCRIPTOR RDL /RD2
— —>»| mEssace RGZ7RO3
HANDLER RD3 /RD4
I :IC'*“””‘“’ [ror/os |
[1 5
S ©) =
| [owawrme |
L’ I CHANNEL 1 |‘ |_ @
a
HOST CPU ® o
S i DMA READ RX a
CHANNEL O 2 PROTOCoL CAN RX
| HANDLER l—r
I T
T % CONTROLLER
Vi A LOCAL MEMORY
RX Data Container RX FIFO Queue CONTROLLER
(Nx64Byte) Descriptor linked -list
MESSAGE HANDLER
Rx Inked-lst start
MEM|AXI
Bement 0 @ Protected Area
Bement 1:RX_AP
Eement 2 150 Filter Elements and
Bement 3 TS1 >
References
Eement 1:RX_AP
Eoment 2 150

Bement 3 151 Fiter Bement 1 Fiter Eement 0
Fiter Bement 2 Fiter Eement 1
Bement 1t RX AP Fiter Eement 2

Bement 2: TS0
Bement 3: TS1

Fifer Bement P2
Fiter Bement P-1
Reference Valied
Reference Mask0
Reference Valiel
Reference Nask1

Reference Valie Q1
Reference Nask Q1

Fiter Element P-1
Reference ValueO
Reference Mask0
Reference Valuel
Reference Mask 1

Reference Value QT

Reference Mask Q1

D IN ORDER

Bement0 Curreq(RX
Berment 1: RX_AP Descriptor
Bement 2:150
Bement 3:7S1

Il CPU read and write data path

Il RX descriptor acknowledge wite data path
[RX descriptor read data path L_MEM
I RX message write data path

[RX Filter read data path

) E

RX FIFO Queue
S_MEM

Figure: RX FIFO Queue data flow in Continuous Mode
1.4.5.21 TX-SCAN

To avoid any misunderstanding when talking about the selection of the next TX message to be sent to
the PRT, the term TX-SCAN is used to define this process.

To arbitrate TX FIFO queues and cope with high latency in S_ MEM, the TX Header Descriptor of every
active TX FIFO Queues are stored into the L_ MEM. The same applies for the TX Priority Queue slots
when they are declared as active. It means up to 8 TX FIFO Queues Header Descriptor can be declared
in L_MEM and up to 32 for the TX Priority Queue. Doing so, it becomes much easier to parse all the
active TX Header Descriptors locally to identify which TX message has the highest priority. The TX-
SCAN process would be very fast and the expected TX message order at CAN bus as close as possible
to the one expected by the SW.

The TX-SCAN uses the list of TX descriptors available in L_MEM. When a new TX descriptor is added, a
flag is set to indicate the availability of a new potential candidate. As long as the TX descriptor is not
executed or discarded, it will remain as a valid candidate, see TX_FQ_DESC_VALID and
TX_PQ_DESC_VALID registers.

y
176 | 306

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 177 | 306

Event to trigger a TX-SCAN run:
e A new TX message written in a TX Priority Queue slot
e A TX message sent successfully
e A TX message discarded after N re-transmissions
e A SW abort of a TX Priority Queue slot
A SW abort of a TX FIFO Queue
A TX message rejected by the TX Filter
A TX message starting to be sent (in case of TX FIFO Queue, triggers the fetch of the next
descriptor)

Any new TX message appended to a TX FIFO Queue does not trig a new TX-SCAN. The MH is only
processing TX descriptor one after the other in every TX FIFO Queue, it does not know if a new
message is added to one of them.

A re-transmission counter defines the number of re-transmissions allowed to the same TX message
when this one is unsuccessful. For every trial of the same TX message, the re-transmission counter is
incremented and compared to a maximum value defined in the MH_CFG.MAX_RETRANS[2:0]. If the
counter exceeds the limit, the current TX message will no longer be considered and is skipped, the
next TX message is taken instead. The re-transmission counter is set back to 0 when a new TX
message is selected. There is the option to define an unlimited number of trials for TX messages.
The maximum number of re-transmissions is defined by the register MH_CFG.MAX_RETRANS[2:0] and
covers the maximum value defined in CiA610-1.
Several options are defined:

e 0: No re-transmission

e 1to6:1to 6 re-transmissions

e 7: Unlimited re-transmissions (default value)

Here below is the definition of the 32bit priority value when considering Classical CAN, CAN FD, and
CAN XL. The fields XLF, FDF, XTD, RTR, SRR and ID (defined in CAN protocol [1] and [2]) are used to
determine the priority value of a given TX message. The priority value is computed for every TX
message and then compared with each other to identify the highest priority message (the lowest value
gives the highest priority message to transmit).

Only the TO of the TX Header Descriptor is used for the selection of the highest priority message. As
the relevant bits are defined in TO element, only a single read access from the L_MEM is required. This
would result to the following statement:

IMPORTANT: In Classical frame format, a data frame and a remote frame with the same identifier have
the same priority in the TX-Scan.

CAN Protocol Selection Priority Value
Protocol [XLF FDF XTD
(To[30]) | (To[31)) | (To[29)) 31 down to 21 20 19 18 17 16 downto 1 0
Classic T0[28:18] 0 0 0 .
CAN 0 0 0 (Base ID[10:0]) | (RTR) | xTD) | (FDF) | © 16’00 0
Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 178 | 306
Classic
CAN 0 0 L TO[28:18] 1 1 TO[L7:0] 0
(extend (Base 1D[10:0]) (SRR) (XTD) (Identifier Extension[17:0]) (RTR)
ed ID)
TO[28:18] 0 0 1 .
CANFD |0 ! 0 (Base ID[10:0) | (RRS) | (xTD) | (FOF) | © 16’00 0
CA':' Fg 0 L L TO[28:18] 1 1 TO[L7:0] 0
(gg Ieg) (Base ID[10:0]) | (SRR) | (XTD) (Identifier Extension[17:0]) (RRS)
T0[28:18] TO[17] 0 1 1
CAN XL 1 X X |%3[r1|(())n(% (RRS) (XTD) (FDF) (XLF) 16'b0 0

The selection of the TX message is done by looking at the queues in the following order, TX Priority
Queue slots from 0 to 31, then the TX FIFO Queues are scanned from O to 7. The process of TX
message selection will keep the two highest priority messages over the full scan.

IMPORTANT: When two or more TX messages have the same priority value, the first one will always be
kept as the one to be sent first.

IMPORTANT: At initial time, when several TX FIFO Queues are started at the same time, the first TX
messages may not be in the right order. Due to the scanning order (TX Priority Queue slots 0 to 31
and then TX FIFO Queue 0 to 7) and if the system memory latency is high, by the time the last TX
descriptor is uploaded to the L_MEM, some TX messages may have been already scanned for the
highest priority and sent to the PRT. This is normal behavior and will last only for the first TX
messages.

As soon as a new Header Descriptor is available in the L_MEM, it will be arbitrated automatically if the
TX-Scan process is not running. In case that a new TX Header Descriptor is stored in the L_ MEM while
the TX-Scan is running, the TX-Scan goes up to the end and will restarted to take this new descriptor
into account.

Before starting the TX-Scan, the list of all potential candidates (valid) on the L_ MEM is stored locally.
This process will ensure a proper definition of the best candidates after a complete scan at the time it
is done.

The duration of the TX-Scan mainly depends on the access time to the L_ MEM and the number of TX
FIFO Queues and TX Priority Queue Slots. Here is the list of parameters that will drive the overall
time:

e The number of TX FIFO Queues being active at the same time
e The number of TX Priority Queue slots active at the same time
e The L_MEM read latency to fetch one single word

The processing time for one TX -Scan run can be defined as:

TX-Scan processing time (us) = Lr * (Nbfg + Nbpqgs) * (1/CLK (MHz) where

Nbfg = Number of TX FIFO Queues active, Nbpgs = Number of TX Priority Queue slots active, Lr = read
latency from L_MEM defined in number of CLK clock cycles

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 179 | 306

In any cases, when a new TX message is scheduled for transmission and it has the highest priority, the
maximum delay to have this message selected by the TX-SCAN depends on, the maximum number of
TX FIFO Queue and TX priority Queue running concurrently at that time. Considering a maximum of 8
TX FIFO Queues and 32 TX Priority Queue slots running at the same time this leads to (considering the
previous formula):

Max TX SCAN duration (us) = Lr * 40 * (1/CLK (MHz).

As an example, CLK = 160MHz, Lr = 10 cycles leads to a Max delay TX message selection equal to 2.5
us. It is important to note that, in case of a TX message already being sent, the newer highest priority
message will have to wait for the current one to finish. Thus, the overall delay to have this message on
the CAN bus may change according to the CAN protocol, the payload data size and bit rate.

To ensure the continuity of a TX message, it is important to note that regarding TX FIFO Queues, the
current and the next TX Header Descriptor for a given FIFO are loaded in the L_MEM. This assumption
is valid only if the two TX descriptors are valid. Thus, if several TX messages in the same FIFO have the
highest priority over the others, they will be sent back-to-back. For the TX priority Queue, things are
different as one TX message is stored per slot. Only the TX message defined as active in a slot is
considered at any time.

Two internal buffers are used to hold the TX descriptors in order to send TX messages in a row. One is
holding the current TX descriptor to be sent right away to the PRT while the other stores the TX
descriptor for the next message. It is important to note that the TX descriptors selected are the result
of one TX-Scan. If any new events like, a message sent or a new message to be sent occurs, the two
candidates may not be right ones. In this case the TX descriptors already buffered may need to be
changed by some new ones. The change is performed step by step, to always have the highest priority
message of one TX-Scan run available in one of the two local buffers. The previous TX descriptor with
the highest priority is kept in one of the two local buffers while the new highest one is replacing the
other. This procedure is repeated, if required, to change the second highest priority message.

The event of any new TX descriptor being loaded and available in the L_MEM triggers a TX-SCAN run.
The TX descriptors describing TX messages can only considered by the TX-SCAN if they are available in
L_MEM, see TX_FQ_DESC_VALID and TX_PQ_DESC_VALID registers.

To prepare the next TX descriptor and to react properly according to the results of the data being
sent, there will be several actions to perform:

e The TX-SCAN computes the two next potential candidates, without considering the TX
descriptor set as current in one of the two local buffers (the one with the highest priority).
As soon as they are identified, the information related to the source of the two next highest
priority messages is stored locally.

e The first candidate is compared to the one already in local buffer and has the lowest priority
(the one with the highest priority is kept for the next transmission to come). If the first
candidate computed is already in one of the two local buffers, nothing needs to be done. If

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 180 | 306

this is not the case, it is uploaded to provide the next highest priority TX message and will
replace the one having the lowest priority in the local buffers. This is mandatory to ensure
that there is always a valid TX descriptor with high priority to provide to the PRT, at any
time. This is valid, even if the highest priority TX descriptor in local buffer may, at this time,
not be the one with the highest priority. As soon as the first candidate is loaded in the local
buffer, it may become the current one if it has the highest priority or the next one
otherwise. It may happen that, while loading the first candidate, the current one is used as
the next TX message. Nothing can prevent such scenario and either the one with the
highest priority is sent first or at the second place.

e The second candidate is compared with the one previously defined as the current one. If the
second candidate computed is already in one of the two local buffers, nothing needs to be
done. If this is not the case, it is uploaded to provide the second highest TX message. In
this particular case, the second candidate overwrites the other local buffer.

Here below is the flow chart of the TX-SCAN process.

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

B T I a—aha—S——SS.S,S,
X_CAN 181 | 306

ew TX descriptol
in L_MEM?

Set the TO of the lowest priority TX
descriptor from the two local buffers as
the first and second potential candidate|
(initialization

Get the first TX descriptor from the list g
valid descriptors

Is first potentia
candidate in local
buffer?

Compare the TX descriptor to be fetched
with the one selected in local buffer

Is TX descriptor
already in local
buffer?

Upload full TX descriptor buffer from
L_MEM and replace the TX descriptor i
local buffer having the lowest priority

Fetch TO from L_MEM for the TX
descriptor selected

s second potentiad
candidate in local
buffer?

Al Compare TO against the first and second
potential candidates

s TX descriptor having
higher priority?

Upload full TX descriptor buffer from
L_MEM and replace the TX descriptor i
local buffer used as the

Set the TX descriptor fetched as the ne
first or second potential candidate

Return

Is there a new valid
TX descriptor?

Get the next
of valid descriptors

Figure: TX-Scan data flow
According to the status of the message sent, there will be two different actions:

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN

182 | 306

e The TX message is sent successfully: the next candidate is considered as the current
message. If no new TX descriptor is available in the L_MEM, the next candidate to be

fetched is already known, otherwise a new TX-SCAN run is launched.

e The TX message is not sent successfully: The first next candidate is compared with the
current one being not successful. If the current candidate has a higher priority, it will be
considered as the one to select, otherwise the other candidate is used instead. On top of
it, the re-transmission counter defined in the MH_CFG register will limit the number of
possible trials for the same message. If the counter exceeds the limit, the current
candidate will no longer be considered, even it has the highest priority. The TX message is
skipped, and the next candidate is taken instead. If the counter does not reach the
maximum value defined and a new message is taken instead, the counter is reset to 0.

Some TX-SCAN scenarios are described here below with the following assumptions:

e Three TX FIFO Queues and 3 TX Priority Queue slots are defined

e The TX messages are sent without any pause (no RX message received)

e For the sake of simplicity, only the ID in TO is used as the main criteria to select the TX
message to be sent

e A TX message is defined per TX descriptor (only Header Descriptor are defined)
The first scenario describes the TX-SCAN based only on TX FIFO Queues running and considering every
message as sent successfully.

TX FIFO QUEUES

Descriptor number 0 1 5
used by TX FIFO

QUEUE ID ID ID

N - 18 -

N+1 - 5 -

N+2 - 40 -

N+3 - 30 10

N+4 1 1 38

N+5 0 110 80

N+6 4 24 20

N+7 7 6 6

N+8 11 4 8

N+9 20 29 15

N+10 100 50 39

ID: TX Header Descriptor ID (one TX message per TX descriptor)

“ Z c TX Header Descriptor in L_MEM
o2 CAN BUS TX-SCAN results
%) TX FIFO QUEUES TX PRIORITY
Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 183 | 306

QUEUE SLOTS
0 1 0 1
CID|NID|CID|NID|CID|NID| CID |CID| CID IDIP Rl\gjflt NIDMNS | NIDMS
0 1 18 10 ok 1
1 1 0 18 10 1 ok 1 0
2 0 4 18 10 0 ok 0 4
3 4 7 18 10 4 ok 4 7
4 7 11 | 18 10 7 ok 7 10
5 11 18 10 | 38 10 ok 10 11
6 11 | 20 | 18 38 11 ok 11 18
7 20 18 | 5 38 18 ok 18 5
8 20 5 | 40 | 38 5 ok 5 20
9 20 | 100 | 40 38 20 ok 20 38
10 100 40 38 | 80 38 ok 38 40
11 100 40 | 30 | 80 40 ok 40 30
12 100 30 1 80 30 ok 30 1
13

CID: Current TX Header Descriptor ID to consider for TX-SCAN
NID: Next TX Header Descriptor ID to consider for TX-SCAN
NIDMS: Next TX Header Descriptor ID if Message Successful

NIDMNS: Next TX Header Descriptor ID if Message Not Successful

IDIP: TX Header Descriptor ID In Progress
The second scenario describes the TX-SCAN based on TX FIFO Queues and TX Priority Queue slots
running and considering every message as sent successfully.

TX FIFO QUEUES
Descriptor number

used by TX FIFO Y L 2
QUEUE ID ID ID

N 18

N+1 5

N+2 40
N+3 30 10
N+4 1 1 38
N+5 0 110 80
N+6 4 24 20
N+7 7 6 6
N+8 11 4 8

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN

N+9

20

29

15

N+10

100

50

39

ID: TX Header Descriptor ID (one TX message per TX descriptor)

184 | 306

TX Header Descriptor in L_ MEM

5 PRIORITY QUEUE
; TX FIFO QUEUE SLOTS CAN BUS TX-SCAN results
O o | + 2R
= MSG

CID|NID|CID|NID|CID|NID| CID | CID CID IDIP Result NIDMNS | NIDMS
0 1 18 10 ok 1
1 1 0 18 10 1 ok 1 0
2 0 4 18 10 0 ok 0 4
3 4 7 18 10 1 4 ok 1 1
4 7 18 10 1 1 ok 1 7
5 7 11 18 10 12 7 ok 7 10
6 11 18 10 | 38 5 12 10 ok 5 5
7 11 18 38 5 12 5 ok 5 11
8 11 20 | 18 38 12 11 ok 11
9 20 18 38 ok 18
10 20 18 5 38 18 ok 18 5
11 20 5 40 | 38 5 ok 5 20
12 20 | 100 | 40 38 20 ok 20 38
13

CID: Current TX Header Descriptor ID to consider for TX-SCAN
NID: Next TX Header Descriptor ID to consider for TX-SCAN
NIDMS: Next TX Header Descriptor ID if Message Successful
NIDMNS: Next TX Header Descriptor ID if Message Not Successful
IDIP: TX Header Descriptor ID In Progress

The third scenario describes the TX-SCAN based on TX FIFO Queues and TX Priority Queue slots

running and considering successful and not successful messages with re-transmission counter set to

1.

Descriptor number
used by TX FIFO
QUEUE

TX FIFO QUEUES

Version 3.9
28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN

N - 18

N+1 - 5

N+2 40

N+3 - 30 10
N+4 1 1 38
N+5 0 110 80
N+6 4 24 20
N+7 7 6 6
N+8 11 4 8
N+9 20 29 15
N+10 100 50 39

ID: TX Header Descriptor ID (one TX message per TX descriptor)

185 | 306

TX Header Descriptor in L. MEM
5 PRIORITY QUEUE
<ZE TX FIFO QUEUE SLOTS CAN BUS TX-SCAN results
: 1 o+ [
X
= CID|NID|CID|NID|CID|NID| CID | CID CID IDIP F';gat NIDMNS | NIDMS
0 - 1 18 - 10 - - - - - ok - 1
1 1 0 18 10 - - - 1 ok 1 0
2 0 4 18 10 - - - 0 ok 0 4
3 4 7 18 10 - 1 - 4 nok 1 1
4 4 7 1 - 1 ok 1 4
5 4 7 18 10 - - - 4 nok 4 7
6 4 7 18 10 - - 12 4 ok 7 7
7 7 11 18 10 5 - 12 7 ok 5 5
8 11 18 10 5 - 12 5 ok 5 10
9 11 18 10 | 38 - - 12 10 ok 10 11
10 11 | 20 18 38 - - 12 11 nok 11
11 11 | 20 18 38 - - 12 11 nok
12 20 18 38 - - ok 18

CID: Current TX Header Descriptor ID to consider for TX-SCAN
NID: Next TX Header Descriptor ID to consider for TX-SCAN
NIDMS: Next TX Header Descriptor ID if Message Successful
NIDMNS: Next TX Header Descriptor ID if Message Not Successful
IDIP: TX Header Descriptor ID In Progress
Some debug registers are used to monitor the activity of the TX-Scan:
e The TX_SCAN_FC register provides the 2 best candidates selected from the previous TX-Scan run
as well as the 2 best candidates for the current run

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 186 | 306

e The TX_SCAN_BC register gives all the relevant information (The TX FIFO Queue number and TX
descriptor offset in that Queue or the TX Priority Queue slot number) regarding the two best
candidates uploaded in the local buffer and ready to be sent to the PRT

e The TX_FQ_DESC_VALID register identifies which TX descriptor is valid, uploaded in the L_MEM
and belonging to the list of potential candidates for the TX-Scan. The information displayed in
that register covers for a given TX FIFO Queue, the current and the next TX descriptors of a
queue that may be loaded in the L_MEM and valid

e The TX_PQ_DESC_VALID register provides the information of the slots of the TX Priority Queue
loaded in the L_MEM and valid (ready for the TX-Scan)

1.4.5.22 TX Filter

To ensure only declared TX messages can go through, the MH provides to the SW a way to define TX
acceptance filters. Only the TX messages being filtered are considered for the arbitration process.
There is the option to enable or disable this TX filtering process (see TX FILTER_CTRLO.EN bit
register) and so to leave all TX messages to go through or not. Several TX filter elements are defined
and processed to determine if the TX message is accepted or rejected. The TX_ FILTER_CTRLO control
register defines how the TX filter elements are used, either standalone or combined.

A TX filter element uses reference values to compare with the TX message header data. The selection
of the bit field to do the comparison can be configured for every TX filter element. Up to 16 TX filter
elements can be defined and apply to every TX message when fetched from the L_ MEM. There is no
way to define those filters only for some specific queues. They apply to all TX messages whatever the
TX FIFO Queues and TX Priority Queue slots.

When a TX filter error occurs, the faulty TX message is acknowledged with the status report "message
rejected by TX filter". Thus, the SW is able to identify which one has been rejected, while scanning the
TX descriptors from the TX FIFO Queues or TX Priority Queue slots. In order to determine the one
being faulty and to avoid waiting for the TX descriptor, the TX_FILTER_ERR_INFO register provides the
relevant information. The TX_FILTER_ERR_INFO.FQ when set to 1 defines a faulty TX message from a
TX FIFO Queue otherwise from the TX Priority Queue. The FIFO Queue number is defined with the
TX_FILTER_ERR_INFO.FQNS_PQSI[3:0] bit field and the slot number with the
TX_FILTER_ERR_INFO.FQNS_PQS[4:0] bit field.

1.4.5.22.1 Global configuration
To protect the setting of those TX filter elements, registers assigned to the configuration are
protected, they can only be accessed in write Privileged mode. Only the required application can

modify the TX filter setting.

A global TX filter configuration register can be used to define, if the TX messages are accepted or
rejected on match using the TX_FILTER_CTRLO.MODE bit register.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 187 | 306

To notify the system that a TX message is rejected, a 7X F/LTER_/RQ interrupt is generated. It is
possible to enable and disable the TX filter interrupt using the TX_FILTER_CTRLO.IRQ_EN bit register.
On top of it, the faulty TX descriptor is acknowledged immediately with the status rejected by TX
filter.

The TX filter elements can be enabled or disabled independently from each other thanks to the
TX_FILTER_CTRL1.VALID[15:0] bit registers.

In order to define the type of data to be compared with, either the VCID or SDT, the
TX_FILTER_CTRL1.FIELD[15:0] is used. This register bit field is relevant for the CAN XL protocol only.

The definition of those TX filter elements is done through the setting of registers. Compared to the RX
filter, the TX filter does not require to have access to the L_MEM, settings are done only in registers,
see TX_FILTER_CTRLO, TX_FILTER_CTRL1, TX_FILTER_REFVAL{n} (n € {0, 1, 2, 3}) registers. It is
assumed that the TX filter elements once defined are statics and won’t change over time while the MH
is running.

Refer to the TX filter registers for a more detailed description of the TX filters.
As the MH can support several CAN protocols, different options are possible on the TX filter, see the
next sections for more details.

1.4.5.22.2 Classical CAN

All Classical CAN TX messages are either accepted or rejected, see TX_FILTER_CTRLO.CC_CAN bit
register. There is no other option for such Classical CAN protocol. The TX filter elements are only used
for the CAN XL protocol.

1.4.5.22.3 CAN FD

All CAN FD messages are either accepted or rejected, see TX_FILTER_CTRLO.CAN_FD bit register.
There is no other option for the CAN FD protocol. The TX filter elements are only used for the CAN XL
protocol.

1.4.5.22.4 CAN XL

Several options are possible to define the TX filter elements.

Two global modes are defined for the overall TX filter elements, either Allow or Reject on match, see
TX_FILTER_CTRLO.MODE bit field register. When the Mode is configured to "Allow" (White List
Approach), which is set by default, a TX message is only transmitted, if there is a match on one of the
TX filter elements. When the Mode is configured to "Reject" (Black List Approach) a TX message is
only transmitted if there is no match at all.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 188 | 306

Every TX filter element is provided with a reference value to be compared with and which bit field in
the message header to be used, either VCID or SDT.

There are three different options on how to define a TX filter element with the previous definition:
Option 1:

In normal mode, the reference value defined in TX_FILTER_REFVAL{n}.REF_VAL3,
TX_FILTER_REFVAL{n}.REF_VAL2, TX_FILTER_REFVAL{n}.REF_VAL1 and
TX_FILTER_REFVAL{n}.REF_VALO (n € {0, 1, 2, 3}) registers, is compared with either SDT or VCID. If
e.g. TX_FILTER_REFVAL{n}.REF_VALO is defined to be compared to VCID and
TX_FILTER_REFVAL{n}.REF_VAL1 to be compared to SDT than a CAN message will get a match if one of
the two values matches.

Any of the 16 TX filter elements can be used to compare the VCID or the SDT value, refer to the
control bit register TX_FILTER_CTRL1.FIELD[n] (n € {0, 1, 2, 3, ..., 15}) (when the bit n is set to 1, the
SDT bit field is selected for the TX filter element otherwise VCID).

The Tx filter n is defined as valid or not valid using the TX_FILTER_CTRL1.VALID[n] (n € {0, 1, 2, 3, ...,
15}) bit register. If the TX filter 1 is not considered, just set the TX FILTER_CTRL1.VALID[1] to 0. An
example of the option 1 is given in the table below.

For such configuration, the TX_FILTER CTRLO.MASK[n] (n € {0, 1, 2, ..., 7}) bit register must be set to
0 for the given TX filter element pair (n and n+1 assuming n is even)

To allow single compare value, meaning one reference value for one match, the
TX_FILTER_CTRLO.COMB[n] must set to O for TX filter element n and n+1 (n being even). In this mode,
there will be always TX filter element n and n+1 available.

Option 2:

Based on the normal mode and to increase the possible filtering options, two TX filter elements can
be combined to allow VCID and SDT to be checked as only one filter. However, both values must be
identical. As only a pair of TX filter elements reference values can be combined,
TX_FILTER_REFVAL{n}.REF_VALO and TX_FILTER_REFVAL{n}.REF_VAL1 or
TX_FILTER_REFVAL{n}.REF VAL2 and TX FILTER_REFVAL{n}.REF VAL3 (n € {0, 1, 2, 3}) can be used.
The selection of the bit field value to be compared with is defined by the TX_FILTER_CTRL1.FIELD[n]
(n€ {0,1, 2,3, ..., 15}) bit register. The setting of this register is identical to the option 1.

Only two adjacent TX filter elements can be configured as combined, using the
TX_FILTER_CTRLO.COMBIn] (n € {0, 1, 2, ..., 7}) bit register. When set to 1, TX filter n and n+1 (n
being even) are combined. As an example, for the REF_VALO/REF_VAL1 in the TX_FILTER_REFVALO
register, the TX_FILTER_CTRLO.COMBIO0] bit must be set to 1.

For such configuration, the TX_FILTER_CTRLO.MASK[n] (n € {0, 1, 2, ..., 7}) bit register must be set to
0 for the given TX filter element pair (n and n+1 assuming n is even).

The TX filter element n and n+1 which are combined (n being even) need to be set as valid (set to 1)
using the TX_FILTER_CTRL1.VALID[n] and TX_FILTER_CTRL1.VALID[n+1] (n € {0, 1, 2, 3, ..., 15}) bit
register. This means that combined TX filter elements require two bits to be set in the
TX_FILTER_CTRL1 register.

Option 3:

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 189 | 306

In order to compare a range of values, a reference value and a mask are required. To provide such
option, two TX filter elements TX filter n and n+ 1 (n is even) can be paired in a way that one is the
value to be compared with while the other is the mask. As only a pair of TX filter elements reference
values can be combined, TX_FILTER_REFVAL{n}.REF_VALO and TX_FILTER_REFVAL{n}.REF_VAL1 or
TX_FILTER_REFVAL{n}.REF_VAL2 and TX_FILTER_REFVAL{n}.REF_VAL3 (n € {0, 1, 2, 3}) can be used.
In order to set one of the two reference value as a mask, the appropriate bit in the
TX_FILTER_CTRLO.MASKI[Nn] (n € {0, 1, 2, ..., 7}) bit register must be set to 1. As an example, the
TX_FILTER_CTRLO.MASK][O] set to 1 is referring to the pair TX_FILTER_REFVALO.REF_VALO and
TX_FILTER_REFVALO.REF_VAL1. In such configuration, the second reference value is the mask, hence
the REF_VAL1 when considering the REF_VALO/REF_VAL1 pair.

The bit field to be compared with is defined by the TX_FILTER_CTRLO.FIELD bit field register. For the
above example the TX_FILTER_CTRLO.FIELD[0] must be set either to 1 for SDT or 0 for VCID. When
TX_FILTER_CTRLO.MASK[0]=1 then TX_FILTER_CTRLO.FIELD[1] is ignored by the MH, REF_VAL1 is
interpreted as a mask only.

Only two adjacent TX filter elements can be configured as combined, using the
TX_FILTER_CTRLO.COMBIn] (n € {0, 1, 2, ..., 7}) bit register. When set to 1, TX filter n and n+1 (n
being even) are combined. As an example, for the TX_FILTER_REFVALO.REF_VALO and
TX_FILTER_REFVALO.REF _VAL1 bit field, the TX_FILTER_CTRLO.COMBI[O0] bit must be set to 1.

It is essential to enable this pair of TX filter element by setting the appropriate bits in the
TX_FILTER_CTRL1 register. As an example, the TX_FILTER_CTRL1.VALID[1:0] set to 2’b11 will enable
the TX_FILTER_REFVALO.REF_VALO (used as reference value) and TX_FILTER_REFVALO.REF_VAL1 (used
as a mask).

The following example shows 4 reference values defined in the TX_FILTER_REFVALO register, others
behave the same.

Option 1 (single): A TX filter element uses only one reference value and one bit field (VCID or SDT)
Option 2 (Combined with matches): REF_VALO and REF_VAL1 are combined to provide a TX filter
element that is able to compare VCID and SDT in the same filter. The same holds for REF_VAL2 and
REF_VAL3.

Option 3 (Combined with mask and value): same as Option 2 with the difference that, REF_VALO is
still the reference value to compare with (either VCID or SDT) but the REF_VAL1 is the mask to apply.

In the table below, the 3 options are depicted.
Table: TX filter Element options

Reference |Option 1 Option 2 Option 3
value (single) (Combined with matches) (Combined with mask and value)
REF VALO REF_VALO = REF_VALO = VCID or SDT REF_VALO (value) = REF_VAL1 (mask)

- (VCID or SDT) |AND AND (VCID or SDT)

= REF_VAL1 = VCID or SDT

REF VAL1 REF_VALA1 A or

- (VCID or SDT)
REF_VAL2 |REF_VAL2 = REF_VAL2 = VCID or SDT REF_VAL2 (value) = REF_VAL3 (mask)
Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 190 | 306
Reference |[Option 1 Option 2 Option 3
value (single) (Combined with matches) (Combined with mask and value)
(VCID or SDT) |AND AND (VCID or SDT)
REF VAL3 REF_VALS3 = REF_VAL3 = VCID or SDT
- (VCID or SDT)

1.4.5.23 RX Filter

The RX filtering provides a way to reject or accept RX messages to the SW as well as to write those
messages to a defined RX FIFO Queue.

Up to 255 RX filters can be defined. The RX filter is defined using a RX filter element (word of 32bit)
associated with up to 2 pairs of reference(32bit)/mask(32bit) values. Those RX filter elements are
continuous in the L_MEM and will be parsed one after the other. Regarding the reference/mask pairs
they are defined after the RX filter element list in the L_ MEM, up to 256 pairs can be declared.

To be flexible, a RX filter is made of up to 2 comparisons, each one using a reference value (32bit) and
mask value (32bit) to apply on one of the incoming header message data words (RO, R1 or R3) from
the PRT. A reference/mask pair can apply to any of the RX filter elements.

It is a SW task to define and write the RX filter elements and reference/mask pairs in the L_ MEM.
There is no direct access to it through the MH. The SW would need to access the L_MEM directly to
program the relevant RX filter elements and reference/mask pairs.

The process of RX filtering is started as soon as the first 32bit word from the PRT is received, meaning
RO. If the RX filter is fetching a filter element which requires R1, the process is on hold waiting for the
32bit word to be available. The same applies with R2 if only RO and R1 are available.

The minimum time dedicated to the RX filtering is defined by the reception of an RX message when it
is sent back-to-back. The timing window in this case is defined by the reception of two first 32bit word
from the PRT (RO/R1) for the current RX message to the next two 32bit words (RO/R1) of the next
message.

1.4.5.23.1 Global configuration

The register RX_FILTER_CTRL is used to set the general configuration for all RX Filters, a write access
in Privileged mode is required. Once the MH is started (MH_CTRL.START = 1), the register is write-
protected. Here below is the list of RX filter configuration setting:

e The number of RX filter elements is defined in the RX_FILTER_CTRL.NB_FE[7:0] bit field
register

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 191 | 306

e non-matching CAN frames can be accepted or rejected by configuring the
RX_FILTER_CTRL.ANMF bit register to 1. If non-matching frames are accepted, they are
stored in the default RX FIFO Queue defined by the RX_FILTER_CTRL.ANMF_FQ[2:0] bit
field register

o If the RX filtering is taking too much time, the data stored in the RX DMA FIFO may lead to an
overflow. There is the option to allow the reception of such frames to the default RX FIFO
Queue (defined by the RX_FILTER_CTRL.ANMF_FQ[2:0] bit field register). This feature is
only enabled when setting the RX_FILTER_CTRL.ANFF bit field register to 1. The
RX_FILTER_CTRL.THRESHOLD[4:0] defines the level in the RX DMA FIFO that has to be
reached before sending the non-filtered frames are sent to the default RX FIFO Queue

e The default RX FIFO Queue number, to write RX message data when non-matching frames OR
non-filtered frames are accepted, is defined in the RX_FILTER_CTRL.ANMF_FQ[2:0] bit field
register. This default RX FIFO Queue value is considered if either the
RX_FILTER_CTRL.ANMF bit or the RX_FILTER_CTRL.ANFF bit is set to 1. It is essential to
enable and start this default RX FIFO Queue prior starting the PRT

1.4.5.23.2 Reference and Mask Pair

Two comparisons in the RX Filter Element can be defined. Each comparison requires a reference value
(REFm) and a mask (MSKm) (m € {0, 1, 2, ..., 255}). The reference and mask value are 32bit data.
The 32bit reference value is compared with the first (R0O), the second (R1) or the third (R2) word
(32bit) of the RX message header (coming from the PRT) after applying the 32bit mask value.

The formula to compute a match is defined as (Ri being RO or R1 or R2; & = bitwise AND) :
MATCHm = 1 When (Ri & MSKm) = REFm Else 0

For one single comparison (REFm,MASKm) in a RX Filter Element:

MATCH = MATCHm

For a RX filter element with two comparisons (REFm,MSKm) and (REFn,MSKn) we have:
MATCH = MATCHm AND MATCHn

Here are the setting of the (REFmM,MSKm) and/or (REFn,MSKn), to mask and compare a bit value:
To mask the bit Ri[j]:

e Set MSK(m/n)[j] =0

e Set REFm(m/n)[j1=0
To compare the bit Ri[j] to a defined bit value:

e Set MSK(m/n)[j] =1

e Set REF(m/n)[j]=1o0r0

Here are two examples of RX filters:

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 192 | 306

To accept only CAN FD and CAN CC frames (in other word to reject only CAN XL frames), only the XLF
bit in the first header matters (RO[30]). This bit must always be set to 0 to indicate CAN FD and CAN
CC frames. This leads to the following mask and reference value:

MASKm[30] = 1, other bits being set to 0

REFm[30] = 0, other bits being set to 0

To reject CAN FD and CAN CC frames (in other word to accept only CAN XL frames), only the XLF bit
in the first header matters (RO[30]). This bit must always be set to 1 to indicate CAN XL frames. This
leads to the following mask and reference value:

MASKm[30] = 1, other bits being set to 0

REFm[30] = 1, other bits being set to 0

The reference value and the mask are defined as a pair of two consecutive words of 32bit in L_MEM,
starting with the REFm. Up to 256 pairs can be defined for the overall RX filter elements. All the pairs
of reference value and mask are appended after the RX filter elements section in L_ MEM, see MH
Software Interface chapter. Any of the 256 reference/mask pairs can be selected for a given RX filter
element.

The RX filter element will use an index to identify the position of the pairs to be used. The first pair is
having the index 0, the second the index 1 and so on. The RX Filter Element is then referring to this
index in the bit field CREFIO and CREFI1 (see RX Filter Element Definition chapter), to identify the
right pair to use.

1.4.5.23.3 RX Filter Element Definition

For every filter element it is possible to:
e Define which RX FIFO Queue to use, if an RX message is accepted or rejected on match
e Generate an interrupt when a filter matches, triggering the signal RX FILTER IRQ to the
system
e Define, if the expected RX message is defined in the blacklist (BLK bit field)
e Define up to 2 comparisons with the option to:
e Select the word index in the header message to look at (limited to RO, R1 and R2),

see WIO or WI1. It is important to note that R2 is a header data for the CAN XL while
a payload data in case of Classical CAN and CAN FD. In case a remote frame is
detected, any filter looking at R2 will be discarded.

e Define the reference value and mask index to perform the comparison, see CREFIO or
CREFI1 bit field

e Reject or accept on match, see ARO and AR1

e Perform two comparisons for a match. When WIO and WI1 are both different from 0,
both comparisons are performed to know if there is a match. In such configuration,

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 193 | 306

the ARO and AR1 must be identical. In case they are not, only the comparison 0 is
performed to check for a match.

RX filter element is described in table below:
Table: RX filter element description

Filter) o Name Description
Section Bit Field
Element
FEn FEn[31:28] RX FIFO Queue number to store the receive
FIFO[3:0] CAN data
FENn[27] IRQ Interrupt: When set to 1 an interrupt is
triggered to the system when a match is
Control
detected
FEn[26] BLK BlackList: When set to 1 the BLK bit defined in
the RX message header is set to 1
FEn[25:24] |Reserved
) FENn[23] Reserved
Companso.n ! FEn[22] AR1 See ARO bit field description. Must always be
(only considered
with comparison equal to A,RO', —
0) FEn[21:20] |[WI1[1:0] See WIO bit field description
FEn[19:12] |CREFI1[7:0] |See CREFIO bit field description
FEn[11] Reserved
FEn[10] ARO Accept or reject on match: when set to 1 the
RX message is rejected on match otherwise
accepted on match
FENn[9:8] WIO0[1:0] Word Index: provide the index of the RX
message header word to compare, 1 for RO, 2
for R1 and 3 for R2 (CAN XL) / RDO (Classic
CAN and CAN FD).
3 is not considered as a valid index for:
- Classical CAN Remote frame
Comparison 0 - Classical CAN frame with no payload
data
- CAN FD frame without payload data
The comparison is then cancelled (next filter
element is taken instead).
When set to 0, no comparison is performed
Comparison Reference Index: provide the index
of the reference pair (value and mask) to be
FEn[7:0] used for comparison. Up to 256 reference pairs
can be defined. Only the reference pair number
CREFIO[7:0] |need to be set in this bit field.
Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 194 | 306

The RX filter element can be used in two different modes:

e One comparison defined: Only the Comparison 0 is considered (WIO > 0 and WI1 = 0)

e Two comparisons defined: Comparison 0 and comparison 1 are used (WIO > 0 and WI1 > 0)
It is essential to understand that if the Comparison 1 is defined, this RX Filter element will not be
considered if the Comparison O is not defined. In such case, the filter element is skipped.

Each time an RX message is received, the RX filtering is triggered and will start the following
seqguence:
e Fetch the first filter element from L_MEM. The start address of this first filter element is
defined in RX_FILTER_MEM_ADD.BASE_ADDR[15:0] register

¢ |If the conditions listed below are met, the RX filter element will be discarded, and the next
filter element be fetched (if there is one available). In all other cases, go to next step:

eWIO=0

¢ WIO = 3 and the frame is either a Classical CAN/CAN FD without payload or a Classical
CAN remote frame.

e WI1 = 3 and the frame is either a Classical CAN/CAN FD without payload or a Classical
CAN remote frame.

e WIO > 0 and WI1 > 0 and ARO/AR1 not equal

e For the comparison 0, using the index CREFIO, the two words for the reference value and
mask are fetched from L_MEM.

e The comparison 0 is done between the word defined by the index WI0 and the reference
value/mask fetched earlier. According to the WI1 bit, several actions are taken:

e WI1 set to O (Comparison 0 only): if there is a match, the RX filter will look at the ARO
bit to identify what to do with the RX message. It would then be accepted or
rejected, and the RX filter stops. If there is no match, the RX filter keeps going with
the next filter element, if there is one available, otherwise it stops.

e WI1 > 0 (Comparison 0 and Comparison 1 expected): if there is a match on the
comparison 0, the RX filter will wait for the result of the comparison 1 to decide
what to do with the RX message. If there is no match on comparison 0, the RX filter
keeps going with the next filter element, if there is one available, otherwise it stops.
For the comparison 1, using the CREFI1, the two words for the reference value and
mask are fetched from L_MEM.

e The comparison 1 is done between the word defined by the index WI1 and the reference
value/mask fetched earlier. If there is a match, the RX filter will look at the ARO bit to
identify what to do with the RX message. It would then be accepted or rejected, and the RX
filter stops. If there is no match, the RX filter keeps going with the next filter element, if
there is one available, otherwise it stops.

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 195 | 306

1.4.5.23.4 RX Header Descriptor Updates

When an RX message is accepted, the index of the RX filter element which has accepted the message
on match is logged inside the RX Header Descriptor. In case the RX message is rejected, no
information is provided to the SW.

The filtering process writes some filtering information to three header data bit fields (see RX Message
header definition chapter):

e The BLK bit in the header data of the RX message can be set by an RX filter element to
indicate to the SW unexpected messages. When the SW parses the RX message Header
Descriptor, it can easily identify a blacklisted message. Having the ARO and ARO/AR1 set to
1 (RX message rejected on match) with the BLK bit has no meaning.

e The FIDX[7:0] bit field is used to provide the information of the filter element index which
has been triggered for that message

e The FAB bit field is set to 1 when the RX filtering process did not complete before the RX
DMA FIFO level gets above its programmed threshold. This bit is set, when such issue
occurs, only if the RX_FILTER_CTRL.ANFF bit register is set to 1 and the
RX_FILTER_CTRL.THRESHOLD[4:0] bit field is greater than 0 (threshold mechanism active)

e The FM bit field when set to 1, notifies the SW that there was a match on the RX filtering.
When the FAB and FM bit fields are set to 0, the RX filtering process ends with no match

1.4.5.23.5 MH Behavior According to RX Filter Setting

The RX filter elements are sequentially read from the L_MEM. This process continues up to the point,
where the RX filter result is known, and the message can either be accepted or rejected.
In case the RX filter selects an RX FIFO Queue that is not enabled, the incoming frame is considered
as a non-matching frame and is discarded, the RX ABORT_/RQ is set to the system.
In a normal situation, when the RX filter result arrives in time, the RX message data is processed
according to RX filter result:

e In case of a match, it is sent to the appropriate RX FIFO Queue

e In case of a reject, the RX message is discarded

Non-matching frames can be accepted or rejected according to the RX_FILTER_CTRL.ANMF bit register
configuration. If RX_FILTER_CTRL.ANMF bit is configured to accept non-matching frames, the RX
message is sent to a default RX FIFO Queue, see RX_FILTER_CTRL.ANMF_FQ[2:0] bit field register.

A threshold can be defined on the RX DMA FIFO to manage not filtered frames, at a defined fill level of
the RX DMA FIFO. The RX_FILTER_CTRL.ANFF must be set to 1 to activate the function and the
RX_FILTER_CTRL.THRESHOLD[4:0] bit field defining the threshold value must be greater than 0. Once

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 196 | 306

activated, those frames are sent to a default RX FIFO Queue, see RX_FILTER_CTRL.ANMF_FQ[2:0] bit
field register.

Here below is the summary of the RX filter behavior when considering RX_FILTER_CTRL.NB_FE[7:0],
RX_FILTER_CTRL.ANMF and RX_FILTER_CTRL.ANFF bit fields:

NBFE[7:0| ANFF RX Filter status
ANMF
]
0 0 X |All RX frames are rejected
; 0 X All RX messages are accepted and are going to the default RX FIFO Queue

defined by RX_FILTER_CTRL.ANMF_FQ[2:0]

Frames with match are going to RX FIFO Queues

0 >0 0 Frames with no match are rejected

No threshold monitoring is performed during RX filtering
Frames with match are going to RX FIFO Queues

Frames with no match are rejected

Frames reaching the RX DMA FIFO level set in the

0 >0 ! RX_FILTER_CTRL.THRESHOLD[4:0] register and not filtered, are going to
the default RX FIFO Queue defined in RX_FILTER_CTRL.ANMF_FQ[2:0]
register
Frames with match are going to RX FIFO Queues

’ 0 0 Frames with no match are going to the default RX FIFO Queue defined by

RX_FILTER_CTRL.ANMF_FQ[2:0]

No threshold monitoring is performed during RX filtering

Frames with match are going to RX FIFO Queues

Frames with no match are going to the default RX FIFO Queue defined by
RX_FILTER_CTRL.ANMF_FQ[2:0]

1 >0 1 Frames reaching the RX DMA FIFO level set in the
RX_FILTER_CTRL.THRESHOLD[4:0] register and not filtered, are going to
the default RX FIFO Queue defined in RX_FILTER_CTRL.ANMF_FQ[2:0]
register

The MH will manage the RX message differently if a default RX FIFO Queue is defined or not, with or
without a threshold defined. The configurations being able to use the two last options are described
below:

1) Threshold mechanism is not active (RX_FILTER_CTRL.ANFF bit set to 0 and
RX_FILTER_CTRL.NBFE[7:0] > 0).
Two scenarios can occur:
e The RX filtering result is not known before receiving the first word of the next RX message and
the amount of the CAN frame data is lower than the RX DMA FIFO. The next RX message is
discarded with the RX ABORT_/RQ interrupt triggered to the system.

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN

¢ In case the amount of data received, while waiting the RX filtering result, does exceed the
maximum RX DMA FIFO size, the RX message is discarded with the RX ABORT IRQ interrupt.
The DP_DO ERR interrupt is triggered to notify a RX DMA FIFO overflow.

2) Threshold mechanism is active (RX_FILTER_CTRL.ANNF bit set to 1 and RX_FILTER CTRL.NBFE[7:0]
> 0 and RX_FILTER_CTRL.THRESHOLDI[4:0] value is greater than 0). This backup solution to avoid
losing the RX message is possible due to the monitoring of the RX DMA FIFO level and a threshold
configured in the RX_FILTER_CTRL.THRESHOLD[4:0] bit field register (see next section for more
details).
Two scenarios can occur:

e The RX filtering result takes a very long time, and the frame size is large. Once the threshold is
reached, the RX descriptor from the default RX FIFO Queue is fetched from the S_MEM. Then,
the RX buffer address pointer defined in the RX descriptor is used to write the first burst of
data to the default RX FIFO Queue.
e The RX filtering result takes a very long time, and the frame size does not reach the threshold
value. The RX filtering keeps going whatever the new incoming frames. In case a new RX
message is received, it is discarded with the RX ABORT /IRQ interrupt. The RX FILTER ERR is
also triggered to the system to identify that the RX filtering has gone over the second RX frame.
This is an indicator which could explain why the new RX frame is rejected.

Here below is a table to summarize the different scenarios:

Filter result Filter result Comments
Frame when when next RX Action of MH
Length Threshold message
reached arrives
Not possible |Available Store frame in RX FIFO |Normal behavior
Short Queue defined by RX
filter result
Not possible |Not available |Discard next RX The overall processing time is too
message long due to a high number of filters
Short .
and/or a high latency on the L_MEM,
see calculation in Excel-Sheet [6].
Available and |Not considered|Store frame in RX FIFO |Normal behavior
Long ANFF =0 or 1 Queue defined by RX
filter result
Not available |Not considered|Continues RX filtering to |Within this case, the message is
Long and ANFF =0 get filter result written in time to the right RX FIFO
Queue or discarded due to data
overflow on the RX DMA FIFO
Not available [Not considered|Store frame in default |The threshold must be set to a value
Long and ANFF =1 RX FIFO Queue that there is enough time to fetch
the RX descriptor and to write burst
data to S_MEM, see calculation in
Version 3.9 Bosch Automotive Electronics
28 February 2024

ME-IC/PAY

I
197 | 306

X_CAN 198 | 306
Filter result Filter result Comments
Frame when when next RX Action of MH
Length Threshold message
reached arrives
Excel-Sheet [6].

1.4.5.23.6 Threshold computation

The MH uses the RX_FILTER_CTRL.THRESHOLD[4:0] only when the RX_FILTER_CTRL.ANFF bit is set to
1 and the threshold value is greater than 0. The threshold value to be configured by the user depends
on the S_MEM latency, the CAN protocols supported and the CAN XL data bit rate. The RX DMA FIFO
has a size of 32 words (128 byte).

Case 1: Only Classical CAN and/or CAN FD messages are received: The RX DMA FIFO is capable of
storing a complete Classical CAN or CAN FD message. The feature RX_FILTER_CTRL.ANFF should not
be used.

Note: When RX_FILTER_CTRL.ANFF bit is set to 1 and RX_FILTER_CTRL.THRESHOLDI4:0] bit field is
set to 19 or larger, then the threshold will never be reached. This implicitly disables the threshold.

Case 2: CAN XL messages are received: CAN XL messages can be much longer than the RX DMA FIFO
size. When the fill level of the RX DMA FIFO reaches the threshold, the MH will fetch the RX descriptor
from the default RX FIFO Queue and will write the first burst of data stored in the RX DMA FIFO. For
the case, that no RX filter result is available at the point in time the threshold is reached, this
mechanism prevents a data overflow that would occur on the RX DMA FIFO and allows the reception
of the message. It is then, up to the SW to filter this frame.

The threshold divides the time budget provided by the RX DMA FIFO into two parts: (1) time to do the
RX Filtering, (2) Time to fetch the RX Descriptor from S_MEM and to write the first burst of data to
S_MEM. The user should configure the threshold as large as possible, to give the RX Filtering enough
time, but as low as necessary to be able to receive the message, in case RX filtering is not finished yet.
The Excel-Sheet [6] calculates the optimal threshold value, which depends on the S_ MEM latency and
the CAN XL data bit rate.

1.4.5.23.7 RX Filter Processing Time

The number of accesses to evaluate an RX filter element is defined as follow:
Classical CAN and CAN FD:
One single word access (definition of the filter element) and 2 words for the mask and value to
compare with
CAN XL:

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 199 | 306

same as Classical CAN / CAN FD or one single word and 2 reads of 2 words for the 2 mask and
value to compare with

The RX filter element access time depends on the read latency Lr (defined in number of CLA clock
cycles):
Classical CAN and CAN FD:

RX Filter element processing time (us) = ((Lr+2) + (Lr+1+2)) * (1/CLK (MHz))
CAN XL:

RX Filter element processing time (us) = ((Lr+2) + (Lr+1+2)) * (1/CLK (MHz)) with one
comparison

RX Filter element processing time (us) = ((Lr+2) + 2*(Lr+1+2)) * (1/CLK (MHz)) with two
comparisons

The overall RX filter time is computed as follow:

RX Filter processing time (us) = (Nbfelc * ((Lr+2) + (Lr+1+2)) + Nbfe2c * ((Lr+2) + 2*(Lr+1+2))) *
(1/CLK (MHz)) where

Nbfelc = Number of filter element with 1 comparison, Nbfe2c = Number of filter element with 2
comparisons and the read latency Lr (defined in number of CLA clock cycles)

1.4.5.24 Local Memory Controller

The XCAND_MH_MEM_CTRL block is in charge of reading and writing the L_MEM through its AX|4
master interface MEM _AX/ (compliant to AMBA 4 ARM Ltd protocol, see [5]).

The L_MEM Controller manages all requests and data transfers for the different blocks running
concurrently:
e The writes of TX descriptors from the XCAND_DESC block
e The read of RX filter elements from the XCAND_RX_ PATH
e The read of TX descriptor from XCAND _TX PATH when a message has to be sent
e The read of TX descriptor from XCAND_TX_PATH for TX SCAN (selection of the highest priority
TX message)

1.4.5.24.1 Local Memory Side Band Signals

It is assumed that the L_MEM provides safety measure to protect data. The safety protection

implemented in the L_MEM could either report error when reading a data (Single Error Detection) or

be able to correct it in some cases (Single Error Correction and Double Error Detection for example).

To address those two options, two input side band signals denominated MEM_SFTY CE and

MEM _SFTY UE, are provided with the MEM _AX/ interface.

Here below are the expected behavior of those signals and the expected response on the MEM _AX/

interface:

e Error Detection Only: When a corrupted data is read from the L_MEM, a pulse of one CLAK clock cycle
must be generated on the MEM SFTY UE input signal. The MEM _AX/ interface must report a

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 200 | 306

SLVERR response on the MEM _AX/ bus. The MEM_SFTY UE input signal can be fully asynchronous
to the MEM AX/ interface.

e Error Detection and Correction: When a corrupted data is read from the L_MEM but is corrected, a
pulse of one CLAK clock cycle must be generated on the MEM_SFTY CE input signal. The MEM_AX/
interface must report an OKAY response on the MEM _AX/ bus. The MEM_SFTY CE input signal can
be fully asynchronous to the MEM AX/ interface.

1.4.5.24.2 Address Bus

The XCAND_MH_MEM_CTRL block is able to address up to 64Kbyte memory space
(MEM AXI AWADDR[15:0] and MEM _AX| ARADDR[15:0])).

The address burst value is always 32bit aligned.
1.4.5.24.3 Burst Size

The maximum number of bytes to transfer in each data transfer is fixed and set to 4. Any read or write
transfer is always using 32bit.

As a consequence, the write strobe signals are not managed by the XCAND MH_MEM _CTRL as all 4
bytes are always written.

1.4.5.24.4 Burst Length

The L_MEM Controller for the AXI read and write transfers supports INCR burst length 1, 2 and 8
considering an AXI 32bit data bus width.

The burst length from/to the L_MEM is defined based on the data type of information to be used.
Here below are the expected burst lengths from/to the different sub-blocks:
e XCAND_MH_DESC: This sub-block writes the TX descriptor allocated to TX FIFO Queues and
TX Priority Queue slots. The burst length is fixed and set to 8x32bit. There is no read
access from this sub-module.

e XCAND_MH_RX: This sub-block reads the RX filter elements and reference/mask values to
perform the RX message filtering. The burst length is set to 1x32bit for the RX filter
element and 2x32bit for the reference/mask value. There is no write access from this sub-
module.

¢ XCAND_MH_TX: This sub-block reads two types of information, the TX descriptor to be sent
as the next candidate to the TX_ MSG interface and part of the TX descriptors assigned to
TX FIFO Queues and TX Priority Queue slots. A fixed burst length of 1x32bit is used for the
TX SCAN and 8x32bit is used for the TX descriptor.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 201 | 306

1.4.5.24.5 Outstanding

As the L_MEM can be shared across several X_CAN instances and many accesses are required for RX
filtering and TX SCAN, 2 outstanding read transactions can support. As only a few writes are required
from the MH point of view, only 1 outstanding write transaction is supported.

1.4.5.24.6 Burst Type

The only burst type supported is the burst incrementing INCR.
The WRAP/FIXED burst type is not supported.

1.4.5.24.7 Multi-region
The L_MEM Controller does not support multiple region interfaces, see [5] for more details.
1.4.5.24.8 Memory Attributes

The memory attributes for the read or write accesses to the L_MEM is Normal, Non-modifiable (Non-
cacheable in AX13) and Non-bufferable. No read-allocate nor No Write-allocate are expected on this
interface and would be set to 0. This means MEM_AX|I_ AWCACHE[3:0] and MEM_AXI_ARCACHE[3:0]
are set to 0b0000.

As a reminder, Non-bufferable means (See [5] for more details):
e The write response must be obtained from the destination.
e Read data must be obtained from the destination.
e Transactions are Non-modifiable
e Read and write transactions from the same ID to addresses that overlap must remain
ordered.
As a reminder, Non-modifiable means:
¢ A Non-modifiable transaction must not be split into multiple transactions or merged with
other transactions.
¢ In a Non-modifiable transaction, the parameters AXADDR, AxSIZE, AXLEN, AxBURST and
AxPROT must not be changed.

1.4.5.24.9 Access Permissions

It is considered that any access is always defined as a Data, Secure and the operating mode is
Unprivileged, see [5] for more details. Those setting cannot be changed by SW.

Therefore, any access from the MH which needs to be non-secure, must be managed with an external
and dedicated logic attached to the MEM_AXI interface.

As an example, the RX filter elements and reference/mask can be stored in a secure area in the
L_MEM, as a consequence the MEM_AXI|_ARPROT[1] and MEM_AXI_AWPROT[1] are set to 0. Doing so,

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 202 | 306

the MH is able to read secure and non-secure data in the L_MEM, with the assumption that non-secure
area is always accessible by a secure access. This means MEM_AXI_A(W/R)PROT[2:0] is set to 0b000.

1.4.5.24.10 Transaction ID

The L_MEM Controller builds the ID of every burst access based on the source of request. It provides
a way to track which sub-block is doing the access at any time on the system bus.

For the AXI read interface, the MEM_AXI_ARID[1:0] defines the channel number as follow:
2’b00 => XCAND_MH_TX reads TX descriptor from L_MEM

2’b01 => XCAND_MH_TX read part of TX descriptor from L_MEM for TX SCAN

2’b10 => XCAND_MH_RX reads RX filter elements and reference/mask values from L_MEM
2’b11 => Reserved

For the AXI write interface, the MEM_AXI_AWID[O] defines the channel number as follow:
1’b0 => XCAND_MH_DESC writes TX descriptor to L_ MEM

1’b1 => Reserved

1.4.5.25 Trace and Debug
1.4.5.25.1 Interrupts

For integration verification, it is possible to trigger functional and safety interrupts by SW. Here is the
procedure:

1) Unlock the DEBUG_TEST_CTRL register, see section Lock Mechanism Protection in Register
Protection chapter

2) Write the DEBUG_TEST_CTRL.TEST_IRQ_EN bit to 1 in Privileged mode

3) Once the access to the INT_TESTO and INT_TEST1 registers are allowed (always accessible once
opened), write 1 to the relevant bit to set the appropriate interrupt line.

Re-lock the access to the INT_TESTO and INT_TEST1 registers. Step 1) and 2) needs to be done with
DEBUG_TEST_CTRL.TEST_IRQ_EN bit set to O instead.

1.4.5.25.2 Hardware Debug Port

The 16bit HDP bus provides some visibility to internal signals to debug the MH. By default, there is no
activity on the HDP bus.

To enable the toggling of the HW signal on the HDP bus, set the DEBUG_TEST_CTRL.HDP_EN bit to 1.
1) Unlock the DEBUG_TEST_CTRL register, see section Lock Mechanism Protection in Register
Protection chapter
2) Write the DEBUG_TEST_CTRL.HDP_EN bit to 1 and the selected set to be monitored on the HDP
using the DEBUG_TEST_CTRL.HDP_SEL[2:0]. This access must be done in Privileged mode.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 203 | 306

To disable the Hardware Debug Port monitoring, do the previous set with DEBUG_TEST_CTRL.HDP_EN
bit to 0.

Up to 8 sets can be defined using the DEBUG_TEST_CTRL.HDP_SEL[2:0] bit field. When the value is
set to n the set n is selected on the HDP bus.

INTERRUPTS:

The interrupt line assigned to the RX or TX FIFO Queue can be monitored individually. Therefore, it is
possible to track the activity of the FIFO Queues while they are running. To allow the visibility of all
MH interrupts, on the same HDP set, the TX FIFO Queues interrupt lines are gathered to only one
single HW internal signal called 7X FQ /RQ ORED (the interrupts are 'ored'). The same is done on the
RX FIFO Queues and so the interrupts are 'ored' to provide the HW internal signal RX FQ /RQ ORED.

IMPORTANT: There are two possible sources to trig an interrupt (valid for TX_FQ_IRQ[7:0],
RX_FQ_IRQ[7:0] and TX_PQ_IRQ interrupt lines): one is related to functional and the other one is from
the INT_TESTO and INT _TEST1 registers (for integration test only). Only the functional interrupt source
is displayed on the HDP set. Therefore, when an interrupt is triggered, by a write access to either
INT_TESTO or INT_TEST1 register, it will not be visible on the HDP. Nevertheless, the interrupt line is
properly set at the MH interface.

INTERFACES:
To ensure the traceability of the traffic going from and to the MH, the following interfaces can be
monitored through one of the HDP sets:
e DMA AXl interface (control signals) used to manage RX/TX descriptors and RX/TX message data
¢ MEM_AXI interface (control signals) used to manage TX descriptors for TX-Scan and RX filtering
e TX_MSG interface (control signals) used to transmit TX message from MH to PRT
e RX_MSQG interface (control signals) used to receive RX message from PRT to MH

Here below are the description of sets available on the MH HDP bus.

HDP[15:0] Set 0 Set 1
(Interrupts) (RX and TX path)
15 TX FQ IRQ[7] CLK
14 TX FQ IRQ[6] TX FQ IRQ_ORED
13 TX FQ_IRQ[5] RX FQ IRQ_ORED
12 TX FQ_IRQ[4] TX PQ IRQ
11 TX FQ_IRQ[3] RX FILTER ERR
10 TX FQ IRQ[2] RX FILTER IRQ
9 TX FQ IRQ[1] TX FILTER IRQ
8 TX FQ_IRQ[O] STATS IRQ
7 RX FQ_IRQ[7] TX ABORT IRQ
6 RX FQ IRQ[6] RX ABORT IRQ
5 RX FQ_IRQ[5] DP_SEQ ERR
Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

IS A TS, y
X_CAN 204 | 306
HDP[15:0] Set O Set 1
(Interrupts) (RX and TX path)
4 RX FQ_IRQ[4] DP_DO ERR
3 RX FQ IRQ[3] STOP IRQ
2 RX FQ IRQ[2] RESP_ERR[1]
1 RX FQ_IRQ[1] RESP ERR[0]
0 RX FQ_IRQ[0] ENABLE
HDP[15:0] Set 2 Set 3
(TX Scan) (MH-PRT Interface)
15 FH _OFFSET[9] CLK
14 FH _OFFSET[8] TX MSG WVALID
13 FH _OFFSET[7] TX MSG WUSER[7]
12 FH OFFSET[6] TX MSG WUSER[O]
11 FH OFFSET[5] TX MSG WREADY
10 FH OFFSET[4] TX MSG_BVALID
9 FH OFFSET[3] TX MSG BUSER STATUS/[2]
8 FH OFFSET[2] TX MSG_BUSER STATUS[1]
7 FH OFFSET[1] TX MSG BUSER STATUS[0]
6 FH OFFSET[0] TX MSG_BREADY
5 FH FQN_PQN[4] RX MSG WVALID
4 FH_FQN_PQN[3] RX MSG_WUSER[2]
3 FH FQN_PQN[2] RX MSG WUSER[1]
2 FH_FQN_PQN[1] RX MSG_WUSER[0]
1 FH FQN_PQN[0] RX MSG_WREADY
0 FH PQ ENABLE
HDP[15:0] Set 4 Set 5
(Write AXI DMA Interface) (Read AXI DMA Interface)
15 CLK CLK
14 DMA_AX| BID[0] DMA_AX] RID[1]
13 DMA_AX| BVALID DMA_AXI_RID[O]
12 DMA AXI BREADY NA
11 DMA AXI BRESP[1] DMA AXI RRESP[1]
10 DMA_AX| BRESP[O] DMA_AX| RRESP[0]
9 DMA_AX| WREADY DMA_AX| RREADY
8 DMA_AXI WVALID DMA_AXI RVALID
7 DMA_AX| WLAST DMA _AXI RLAST

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN
HDP[15:0] Set 4 Set 5
(Write AXI DMA Interface) (Read AXI DMA Interface)
6 NA DMA AXI ARID[1]
5 DMA_AXI AWID[O] DMA_AXI ARID[O]
4 DMA AXI AWVALID DMA AXI ARVALID
3 DMA AXI AWREADY DMA AXI ARREADY
2 DMA_AXI AWLEN[2] DMA_AXI ARLEN[2]
1 DMA_AXI AWLEN[1] DMA_AXI ARLEN[1]
0 DMA_AX| AWLEN[O] DMA_AXI ARLEN[O]
HDP[15:0] Set 6 Set7
(Write AXI MEM Interface) (Read AXI MEM Interface)
15 CLK CLK
14 MEM _AX|_BID[0] MEM_AXI_RID[1]
13 MEM_AXI BVALID MEM_AXI_RID[O]
12 MEM _AXI_BREADY NA
11 MEM _AX| BRESP[1] MEM AX| RRESP[1]
10 MEM _AX| BRESP[0] MEM _AX| RRESP[0]
9 MEM_AX| WREADY MEM AX| RREADY
8 MEM _AXI WVALID MEM_AXI RVALID
7 MEM _AXI WLAST MEM AX| RLAST
6 NA MEM _AX| ARID[1]
5 MEM_AXI_ AWID[O] MEM_AXI_ARID[O]
4 MEM _AXI AWVALID MEM _AXI ARVALID
3 MEM _AXI AWREADY MEM _AXI ARREADY
2 MEM _AXI AWLEN[2] MEM_AX|_ ARLEN[2]
1 MEM _AXI AWLEN[1] MEM AX] ARLEN[1]
0 MEM _AX| AWLEN[O] MEM_AX| ARLEN[O]

1.4.5.25.3 TX-Scan

In order to keep track of the TX-Scan process, some registers provide the relevant information to
observe the selection of the next TX message, meaning, which TX FIFO Queue number and which

I
205 | 306

message within this FIFO Queue is selected, or which TX Priority Queue slot number. The TX_SCAN_FC

and TX_SCAN_BC registers are monitoring the TX-Scan activity, see Software Interface chapter for

more details. The duration of a CAN frame is large enough to make it possible, to read those registers
in time and get some valuable information.

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 206 | 306

The TX_SCAN_FC register provides the information of the source of the four first candidates selected
by the TX-Scan., meaning the TX FIFO Queue number or the TX Priority Queue slot number.
The source of the two first candidates are defined by:

e The TX_SCAN_FC.FQ_PQ{n} (n € {0, 1}) bit register: when set to 0, the first or second candidate
is a TX FIFO Queue. In fact, TX_SCAN_FC.FQ_PQO = TX_SCAN_BC.FH_PQ and
TX_SCAN_FC.FQ_PQ1 = TX_SCAN_BC.SH_PQ, see TX_SCAN_BC register description below

e The TX_SCAN_FC.FQN_PQSN{n} (n € {0, 1}) bit register: define either a TX FIFO Queue number
or a TX Priority Queue slot number according to the TX_SCAN_FC.FQ_PQ{n} (n € {0, 1}) bit
register. In fact, TX_SCAN_FC.FQN_PQSNO = TX_SCAN_BC.FH_FQN_PQSN and
TX_SCAN_FC.FQN_PQSN1 = TX_SCAN_BC.SH_FQN_PQSN, see TX_SCAN_BC register description
below

e The two sources of the last two candidates are monitoring the selection of a TX-Scan. It is
essential to note that the value in those registers is not stable, compare to the source of the
two first candidate, and will change during a TX-Scan run. When the TX_SCAN_FC.FQ_PQ{n} (n
€ {0, 1, ..., 3}) is set to 0, the candidate n is a TX FIFO Queue, looking at the
TX_SCAN_FC.FQN_PQSN{n} (n € {0, 1, ..., 3} bit field, provides the number. If the
TX_SCAN_FC.FQ_PQ{n} (n€ {0, 1, ..., 3}) is set to 1, the candidate n is a TX Priority Queue
and the slot number is defined by the TX_ SCAN_FC.FQN_PQSN{n} (n € {0, 1, ..., 3} bit field.

The value of the TX_SCAN_FC register is updated when a new TX Scan result is available, see TX-SCAN
chapter.

The TX_SCAN_BC register gives the full reference of the first and second highest priority messages,
defined and uploaded at the end of a TX-Scan run (see Buffer A and B in TX Message Handler
chapter). The first highest candidate is the one selected and sent to the CAN bus. The second highest
priority candidate is the TX message to be sent, once the transmission of the first highest candidate is
completed. The register values provide full visibility of the two message candidates stored locally in
Buffer A and B, see TX Message Handler chapter for more details. As such, those registers are stable
over time and do change only after at the end of a TX-Scan.
The first best candidate is defined by:
e The TX_SCAN_BC.FH_PQ bit register: when set to 0, the candidate is a TX FIFO Queue
e The TX_SCAN_BC.FH_FQN_PQSN bit register: define either a TX FIFO Queue number or a TX
Priority Queue slot number according to the TX_SCAN_BC.FH_PQ bit register
e The TX_SCAN_BC.FH_OFFSET bit register: define the offset (in 32byte) of the TX descriptor
selected, starting from the initial start address of the TX FIFO Queue (defined in the
TX_SCAN_BC.FH_FQN_PQS bit register) with TX descriptor address = TX FIFO Queue start
address + offset * 32byte. When the candidate is a TX Priority Queue slot, the
TX_SCAN_BC.FH_OFFSET register has no meaning and is set to O.
The second best candidate is defined by:
e The TX SCAN BC.SH_PQ bit register: when set to O, the candidate is a TX FIFO Queue
e The TX_SCAN_BC.SH_FQN_PQSN bit register: define either the TX FIFO Queue number or the TX
Priority Queue slot number according to the TX_SCAN_BC.FH_PQ bit register
e The TX_SCAN_BC.SH_OFFSET bit register: define the offset (in 32byte) of the TX descriptor
selected, starting from the initial start address of the TX FIFO Queue (defined in the

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 207 | 306

TX_SCAN_BC.SH_FQN_PQSN bit register) with TX descriptor address = TX FIFO Queue start
address + offset * 32byte. It is important to note that, when the TX FIFO queue selected for the
first best candidate is identical to the one for the second, the offset would be also identical. In
such scenario, the second best candidate is always the next TX descriptor of that TX FIFO
Queue. When the candidate is a TX Priority Queue slot, the TX_SCAN_BC.SH_OFFSET register
has no meaning and is set to 0

1.4.5.25.4 TX Descriptor Tracking in a TX FIFO Queue

The current and next TX descriptors for a given TX FIFO Queue n are stored in the L_MEM and can be
identified in the TX_FQ_DESC_VALID.DESC_NC_VALID[n] and TX_FQ_DESC_VALID.DESC_CN_VALID[n]
bit registers.

Here is the status for those bit registers when progressing with the TX FIFO Queue n:

Initial start:

1) The current TX descriptor (first one in case this is an initial start) fetched from S_MEM and written
to L_MEM is leading to TX_FQ_DESC_VALID.DESC_CN_VALID[n] = 1 and
TX_FQ_DESC_VALID.DESC_NC_VALID[n] = 0.

2) If the current TX descriptor is about to be sent go to 3), otherwise stay in 2) and no updates are
done on bit registers.

3) The next descriptor is fetched from S_MEM and written in L_MEM.

e |f the next TX descriptor is not valid then the TX FIFO Queue n is put on hold. The
TX_FQ_DESC_VALID.DESC_CN_VALID[n] set to 1, goes to 0 once the TX message is sent
(TX_FQ_DESC_VALID.DESC_NC_VALID[n] =0).

e If the descriptor is valid, TX_FQ_DESC_VALID.DESC_CN_VALID[n] = 1 and
TX_FQ_DESC_VALID.DESC_NC_VALID[n] =1, go to 4)

4) When the current TX message is fully sent, TX_FQ_DESC_VALID.DESC_CN_VALID[n] = 0 and
TX_FQ_DESC_VALID.DESC_NC_VALID[n] =1.

5) If the current TX descriptor is about to be sent go to 6), otherwise stay in 5) and no updates are
done on bit registers.

6) The next descriptor is fetched from S_MEM and written in L_MEM.

e |f the next TX descriptor is not valid then the TX FIFO Queue n is put on hold. The
TX_FQ_DESC_VALID.DESC_NC_VALID[n] set to 1, goes to 0 once the TX message is sent
(TX_FQ_DESC_VALID.DESC_CN_VALIDI[n] =0).

e If the descriptor is valid, TX_ FQ_DESC_VALID.DESC_NC_VALID[n] = 1 and
TX_FQ_DESC_VALID.DESC_CN_VALID[n] =1, go to 7)

7) When the current TX message is fully sent, TX_FQ_DESC_VALID.DESC_NC_VALID[n] = 0 and
TX_FQ_DESC_VALID.DESC_CN_VALID[n] =1, go to 2)

1.4.5.25.5 TX Descriptor Tracking in TX Priority Queue

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 208 | 306

As soon as a TX Priority Queue slot n is started, the corresponding TX descriptor is fetched from the
S_MEM and written to the L_ MEM. When the TX descriptor assigned to the slot n is fully written in the
L_MEM, the TX_PQ_DESC_VALID.DESC_VALID[n] is set to 1.

If the TX descriptor fetched is not valid or has any safety issue, the
TX_PQ_DESC_VALID.DESC_VALID[n] is not set. In case the TX message of the slot n is discarded, the
TX_PQ_DESC_VALID.DESC_VALID[n] is set back to 0.

1.4.5.25.6 Safety Measures

If a safety measure is active and an issue is detected, the MH may stop. Therefore, it would be difficult
for the SW to analyze and identify the possible root causes. To allow such debugging, every embedded
safety measure can be disabled individually, see MH_SFTY_CTRL register.

1.4.5.26 RX and TX Statistics
1.4.5.26.1 RX Statistic Counters

Two 12bit counters are provided to keep track of how many messages have been received
successfully/unsuccessfully, see RX_STATISTICS register. When a counter has reached the maximum
value, it will wrap to zero with the next increment. The counters can be cleared (set to 0) by writing O
to the dedicated register bit field. To identify when counters are wrapping, the STAT7S /RQ interrupt
line is triggered to the system. To identify the counter which has wrapped, a read to the
STATS_INT_STS register is required. Writing a 1 to the corresponding bit will clear the bit.

Here is the list of root cause to increment the RX_STATISTICS.SUCC[11:0] counter:
e When a RX message is stored in S_ MEM and its RX Header descriptor is acknowledged

Here is the list of root cause to increment the RX_STATISTICS.UNSUCC[11:0] counter.
Safety or Errors:
e When a RX data parity error is detected
e When an RX address pointer parity error is detected
e When an RX descriptor error (request, CRC or invalid) is detected and used for the current RX
message
Functional:
e When an ABORT code word is received from the PRT
¢ When a DO code word is received from the PRT
e When the RX message cannot be written to the RX FIFO Queue (queue not enabled and/or
started)
e When a data overflow occurs on the RX DMA FIFO
e When a new RX message is received while one is already in progress
e When the PRT ENABLE signal is going from High to Low when receiving an RX frame
NOTE: an ABORT codeword from PRT, for an arbitration lost, does not increment the counter of
unsuccessful transmissions.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 209 | 306

1.4.5.26.2 TX Statistic Counters

Two 12bit counters are provided to keep track of how many messages have been transmitted
successfully/unsuccessfully, see TX_STATISTICS register. When a counter has reached the maximum
value, it will wrap to zero with the next increment. The counters can be cleared (set to 0) by writing O
to the dedicated register bit field. To identify when counters are wrapping, the STATS /RQ interrupt
line is triggered to the system. To identify the counter which has wrapped, a read to the
STATS_INT_STS register is required. Writing a 1 to the corresponding bit will clear the bit.

NOTE: an ABORT codeword from PRT, for an arbitration lost, does not increment the counter.

Here is the list of root cause to increment the TX_STATISTICS.SUCC[11:0] counter:
e When a TX message is fully sent to the PRT, and its TX Header descriptor is acknowledged

Here is the list of root cause to increment the TX_STATISTICS.UNSUCCI[11:0] counter.
Safety or Errors:
e Not applicable
Functional:
e When a HFIl code word is received from the PRT
e When the maximum number of transmissions allowed for a given TX message is reached
e When the TX filtering has rejected a TX message

1.4.5.27 Register Access

The MH registers are accessible in read/write mode through its AXI4-Lite slave interface HOST AX/
(compliant to AMBA 4 ARM Ltd protocol, see [5]).

Any access to registers, either read or write, must use a 32bit aligned address, otherwise a SLVERR is
provided as a response.

When an access is performed to a non-mapped register in the address range, a SLVERR is provided as
a response.

When a read access to write-only registers or a write access to read-only registers is performed, a
SLVERR is provided as a response.

When an access is performed to a write-only Privileged register in the address range, a SLVERR is
provided as a response.

The phrase ‘SLVERR is provided as a response’ means that the HOST_AXI responds with RRESP =
‘SLVERR’ respective BRESP = ‘SLVERR’.
The error is only reported on the AXl4-Lite protocol, no interrupt is triggered for such issue.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 210 | 306

The register interface does not provide any access to the L_MEM. It would in charge of the integrator
to provide a direct access to the L_MEM to write the relevant data for the MH.

1.4.5.28 Register Protection
1.4.5.28.1 Lock Mechanism Protection

To secure the access to some of the critical registers, an unlock key sequence is required prior to any
write-modified access. This procedure must be done before every write to a locked register. As soon
as the write is completed, the register is automatically set back to lock mode.

When an access is performed to a locked register, a SLVERR is provided as a response. The error is
only reported on the AXIl4-Lite protocol, no interrupt is triggered for such issue.

Two locks are provided for two different purposes:
¢ A lock that protects the register in charge of stopping RX and TX FIFO Queues as well as TX
Priority Queue slots

e A lock that protects the MH to be set in debug mode
Functional Lock
This sequence is based on three steps as defined below:
e Write 0x1234 to the LOCK.ULK[15:0] bit field register
e Write 0x4321 to the LOCK.ULK[15:0] bit field register
e Write to the unlocked register the expected value
Once the write is performed to the register, it will automatically be locked again.
The following list of registers are using this protection:
e TX_FQ_CTRL1
e TX_PQ_CTRL1
e RX_FQ_CTRL1
Test Mode Lock
An unlock key sequence is required to access the registers assigned to debug and test purpose in
write mode. This procedure must be done before any write action is executed to the locked registers.

This sequence is based on three steps as defined below:
e Write 0x6789 to the LOCK.TMK[15:0] bit field register
o Write 0x9876 to the LOCK.TMK[15:0] bit field register
e Write to the unlocked register the expected value
Once the write is performed to the register, it will automatically be locked again.
The only register using this specific key sequence is the DEBUG_TEST_CTRL register as it does control
the debug mode.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN

1.4.5.28.2 Conditional Access Protection

Some registers can be written if a bit, that is defined in another register, allows the access. As long as
this conditional bit has the right value, any single or consecutive writes can be performed.
Configuration registers are protected by this mechanism to avoid any changes while the logic is

running.

When an access is performed to a write protected register, a SLVERR is provided as a response. The
error is only reported on the AXl4-Lite protocol, no interrupt is triggered for such issue.

The registers with conditional accesses are defined in table below.
Table: Conditional Access Register List

Register Name

Condition to write access

Description/Constraints

MH_CFG

MH_SFTY_CFG

MH_SFTY_CTRL

RX_FILTER_MEM_ADD

TX_DESC_MEM_ADD

AX|_ADD_EXT

AXI_PARAMS

TX_FILTER_CTRLO

TX_FILTER_CTRL1

TX_FILTER_REFVALO

TX_FILTER_REFVALA1

TX_FILTER_REFVAL2

TX_FILTER_REFVAL3

RX_FILTER_CTRL

MH_STS.BUSY=0

The register can be written
if the MH is not running

TX_FQ_START ADD{n}

TX_FQ_SIZEO{n}

TX_FQ_STS0.BUSY[n] =0

The register can be written
if the TX FIFO Queue n is
not running (n € {0, 1, 2,
vy 73)

TX_PQ_START_ADD

TX_PQ_STSO = 0x00000000

The register can be written
if no TX Priority Queue slots
are running

RX_FQ_START ADD{n}

RX_FQ_SIZE{n}

RX_FQ_DC_START ADD{n}

RX_FQ_STS0.BUSY[n] = 0x00

The register can be written
if the RX FIFO Queue n is
not running (n € {0, 1, 2,
ver 73)

INT_TESTO DEBUG_TEST_CTRL.TEST_IRQ_EN = 1 The interrupt lines can be
INT_TEST1 trigger by SW if the

interrupt test mode is

enabled
Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

I
211 | 306

X_CAN 212 | 306

1.4.5.28.3 Register Access Mode

To protect the Debug/Integration Test functions and RX/TX filtering setting, the following registers can
only be written using Privileged/Non-secure/Data access (HOST _AXI_ AWPROT[0] = 1):

e TX_FILTER_CTRLO

e TX_FILTER_CTRL1

e TX_FILTER_REFVALO

e TX_FILTER_REFVALA1

e TX_FILTER_REFVAL2

e TX_FILTER_REFVAL3

e RX_FILTER_CTRL

e DEBUG_TEST_CTRL

Other registers than the ones listed above can use Normal/Non-secure/Data access.
1.4.5.28.4 Register CRC Computation

To protect the MH configuration, control and configuration registers are protected using CRC. A
reference CRC, computed by the SW, is set to a register, and compare with an internal CRC value
computed by the MH. It is important to note that some of the registers won't be accessible once the
MH is started, MH_STS.BUSY set to 1, refer to Conditional Access Protection and Lock Mechanism
Protection sections for more details.

Once the overall MH setting is done and only when there are no more changes on the control and
configuration register, do the following:

e The SW must provide the expected CRC for list of protected registers. The CRC reference value
must be computed, only for the registers defined as CRC protected, starting from the lowest
address offset. The order of the register to be considered for the CRC computation is defined
below (all register values will be checked). The CRC is computed using the 32bit value of the
register defined in the list.

e Once the 32bit CRC value is computed by SW, it must be written to the CRC_REG register. The
write access to this register does not trig a CRC check

e To check the CRC for the registers, set the CRC_CTRL.START bit to 1. The MH goes through the
list of CRC protected registers and compute the global CRC. After a few cycles, the CRC
reference value in the CRC_REG register is compared with the one already computed. If a CRC
error is detected, the REG CRC ERR interrupt signal is triggered. As the check is only done and
control by SW, there is no enable defined

Nothing is preventing the SW to launch at a regular time interval a CRC check by setting the
CRC_CTRL.START bit to 1.

It is recommended to perform a register CRC check, for any new configuration, to ensure a proper
setting before starting the MH.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 213 | 306

Here below is the list of registers protected by CRC, in the order they need to be considered (refer to
sections in Register Protection chapter for register accessibility):

e VERSION

e MH CFG

e MH_SFTY_CFG

e MH_SFTY_CTRL

e RX_FILTER_MEM_ADD

e TX_DESC_MEM_ADD

o AXI_ADD_EXT

o AXI_PARAMS

e LOOPnfromOto7

e TX_FQ_START_ADD{n}

e TX FQ_SIZE{n}

e END LOOP

e TX PQ_START ADD

e LOOPnfromOto7

e RX FQ_START ADD{n}

e RX_FQ_SIZE{n}

e RX_FQ_DC_START_ADD{n}
e END LOOP

e TX_FILTER_CTRLO (Privileged)
e TX_FILTER_CTRL1 (Privileged)
e LOOPnNnfromOto3

e TX FILTER REFVAL{n} (Privileged)
e END LOOP

e RX FILTER CTRL (Privileged)
e DEBUG_TEST_CTRL (Privileged)
e INT TESTO

e INT_TEST1

Here below is the normal polynomial representation and implementation of the CRC-32 used to
protect the registers:
CRC_32 = (X32 +X26 +X23 +X22 +X16 +X12 +X11 +X10 +X8 +X7 +X5 +X4 +X2 +X +1) 3

Here below is the pseudo code to compute the CRC for the MH register bank:

The reg_table[] is the array of 32bit registers defined previously (in the order they are listed):
static logic[31:0] rem32 = 32'hffffffff;

static logic[31:0] rem32_old = 32'hffffffff;

static logic[31:0] poly = 32'h4c11db7;

static logic[31:0] crc32;

// initialize CRC shift register
// This algorithm is indirect

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN

rem32 = 32'hffffffff;
foreach (reg_table[i]) begin

for (intj = 31;

j >=0; j-) begin

214 | 306

// to decide whether reduction with polynomial will be required based on MSB before shift

rem32_old =

rem32;

// shift out MSB of CRC
rem32 = rem32 << 1;
rem32[0] = reg_table[i].get()[j]1;

// perform reduction if required
if (rem32_old[31]) rem32 = rem32 * poly;

end
end

// processing 32 Os more

repeat(32) begin

// to decide whether reduction with polynomial will be required based on MSB before shift
rem32_old = rem32;

// shift out MSB of CRC
rem32 = rem32 << 1;

rem32[0] = 0O;

// perform reduction if required
if (rem32_old[31]) rem32 = rem32 * poly;

end
crc32 = rem32;

1.4.5.29 Error and Exception Handling

Here is the list of

potential issues the MH may have to handle and how it will react:

Error

source

Interrupt

MH behavior

MH

RX acknowledge
path overflow

Acknowledge data
not sent in time
before new one
needs to be stored

DP_DO _ERR

The current RX message is discarded and an
RX_ABORT_IRQ is triggered to the system.
The interrupt DP_DO _ERRis triggered to the
system and the
ERR_INT_STS.DP_RX_ACK_DO_ERR bit status
register is set to 1. The MH finishes its

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN

Error

source

Interrupt

MH behavior

current transactions and stops with
MH_CTRL.BUSY = 0. The SW needs to restart
it and the MH will keep going with its
current task.

TX acknowledge
path overflow

Acknowledge data
not sent in time
before the new
one being stored

DP_DO_ERR

As soon as an acknowledge data locally
stored and ready to be send cannot be done
(due to some overflow) no new messages
will be sent to the PRT. The DP_DO _ERR
interrupt is triggered to the system and the
ERR_INT_STS.DP_TX_ACK_DO_ERR bit status
register is set to 1. The MH finishes its
current transactions and stops with
MH_CTRL.BUSY = 0. The SW needs to restart
it and the MH will keep going with its
current task.

RX DMA FIFO
overflow

The FIFO overflow
on the RX path

DP_DO ERR

The current RX message is discarded and an
RX ABORT_IRQ is sent to the system. The
already RX descriptors used are allocated
for the next message. No status is sent back
to the Header Descriptor. The MH keeps
receiving RX message despite this temporary
issue. The
ERR_INT_STS.DP_RX_FIFO_DO_ERR bit
status register is set to 1.

RX DMA FIFO
above threshold
while RX filtering
in progress

The RX filter has
not completed in
time to avoid a
potential overflow

NONE

The current RX message is sent to the
default RX FIFO Queue as backup solution if
enable, see the RX_FILTER_CTRL register.
The threshold is defined to provide enough
time for the MH to write the message in
S_MEM. The RX Header descriptor of that RX
message will have its status report bit field
set to “message received but not filtered”.
The MH keeps receiving RX message.

RX descriptor
CRC error when
fetched from

S MEM

A CRC error is
detected on RX
descriptor

DESC ERR

As the RX descriptor has a CRC error, the
related RX FIFO Queue is stopped and the
interrupt DESC _ERR is triggered to the
system, see RX_FQ_STS1, RX_FQ_STSO
registers. The
SFTY_INT_STS.RX_DESC_CRC_ERR bit status
register is set to 1. Other RX FIFO Queues
would still be running.

Wrong RX

The expected

DESC_ERR

As the RX descriptor is not the one

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

I
215 | 306

Several issue on
the address could
lead to such result

IS A TS,
X_CAN
Error source Interrupt MH behavior
descriptor descriptor is not expected, the related RX FIFO Queue is
fetched from the one coming stopped and the interrupt DESC ERRis
S MEM back from S_MEM. triggered to the system, see RX_FQ_STS1,
Several issue on RX_FQ_STSO registers. The
the address could SFTY_INT_STS.RX_DESC_REQ_ERR bit status
lead to such result register is set to 1. Other RX FIFO Queues
would still be running.
TX descriptor A CRC error is DESC ERR As the TX descriptor has a CRC error, the
CRC error when |detected on TX related TX FIFO Queue is stopped and the
fetched from descriptor when interrupt DESC ERR is triggered to the
S_MEM fetched from system. The
S_MEM SFTY_INT_STS.TX_DESC_CRC_ERR bit status
register is set to 1. Other TX FIFO Queues
would still be running. TX Priority Queue
slots are managed differently. If an issue
occurs on the TX descriptor the slot will
have its busy and sent flags set to 0, see
TX_PQ_STSO and TX_PQ_STS1 registers.
Wrong TX The expected DESC ERR As the TX descriptor is not the one
descriptor descriptor is not expected, the related TX FIFO Queue is
fetched from the one coming stopped and the interrupt DESC ERRis
S MEM back from S_MEM. triggered to the system. The
Several issue on SFTY_INT_STS.TX_DESC_REQ_ERR bit status
the address could register is set to 1. Other TX FIFO Queues
lead to such result would still be running. TX Priority Queue
slots are managed differently. If an issue
occurs on the TX descriptor the slot will
have its busy and sent flags set to 0, see
TX_PQ_STSO and TX_PQ_STS1 registers.
Wrong TX The expected DESC ERR The TX descriptor selected to be the next
descriptor descriptor is not message candidate is corrupted. Either the
fetched from the one coming related TX FIFO Queue is stopped (see
L_MEM back from L_MEM. TX_FQ_STSO and SFTY_INT_STS registers) or

the TX Priority Queue slot is set disable
(busy flag set to 0), see TX PQ_STSO and
SFTY_INT_STS registers). The interrupt
DESC ERR s triggered to the system. The
SFTY_INT_STS.TX_DESC_REQ_ERR bit status
register is set to 1. Other TX FIFO Queues
would still be running as well as TX Priority
Queue slots.

Parity error

One of the address

AP_PARITY ERR

As the source of parity issue, could lead to

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

I
216 | 306

NS A T—S-S-S--...
X_CAN
Error source Interrupt MH behavior

detected on TX
address pointers

pointers managing
the TX FIFO
Queues or the TX
Priority Queue is
corrupted

wrong memory accesses, the MH stops. The
MH finishes all pending data transfers and
then stops with MH_STS.BUSY = 0. The SW
is notified through the AP_PARITY ERR
interrupt and the
SFTY_INT_STS.AP_TX_PARITY_ERR status bit
register is set to 1.

Parity error
detected on RX

One of the address
pointers managing

AP_PARITY ERR

As the source of parity issue, could lead to
wrong memory accesses, the MH stops. The

address pointers [the RX FIFO MH finishes all pending data transfers and
Queues is then stops with MH_STS.BUSY = 0. The SW
corrupted is notified through the AP_PARITY ERR
interrupt and the
SFTY_INT_STS.AP_RX_PARITY_ERR status bit
register is set to 1.
Register CRC One of the REG CRC ERR There is no way to define which register is
error configuration corrupted and to evaluate which part of the
registers protected logic would be impacted. The MH is
by CRC is stopped. When receiving an RX message, the
corrupted current message is discarded, and all RX
FIFO Queues are stopped. When
transmitting a message, it is aborted. All TX
FIFO Queues are stopped, and all TX Priority
Queue slot are disabled. The interrupt
REG CRC _ERRis sent to system
TX data path Any error sequence|DP_SEQ ERR If any code word reported by the PRT does
sequence error |detected on the not match the expected sequence the PRT
TX_MSG interface and MH are no more synchronized. The MH
finishes all pending data transfers and then
stops with MH_STS.BUSY = 0. the
DP _SEQ ERR interrupt is triggered with the
ERR_INT_STS.DP_TX_SEQ_ERR bit status
register set to 1.
RX data path Any error sequence|DP_SEQ ERR If any code word reported by the PRT does
sequence error |detected on the not match the expected sequence the PRT
RX_MSG interface and MH are no more synchronized. The MH
finishes all pending data transfers and then
stops with MH_STS.BUSY = 0. the
DP_SEQ ERRinterrupt is triggered with the
ERR_INT_STS.DP_RX_SEQ_ERR bit status
register set to 1.
RX frame Due to a high RX ABORT_IRQ As the current RX message has not complete
Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

I
217 | 306

NS A T—S-S-S--...
X_CAN
Error source Interrupt MH behavior
reception in number of filter prior receiving the next frame, the new

progress when
receiving a new
RX message

elements and a
high latency on the
local memory, the
RX filtering
process may cover
almost the
shortest CAN
frame, leading to
an overlap on the
current and new
RX messages

frame is discarded to provide the remaining
time to complete the process on the current
one. Therefore, any new RX message is
aborted with an RX_ABORT_IRQ interrupt.

RX filter not done
in time before a
new RX frame

The RX filter does
not complete in
time its process to
identify the RX

RX FILTER ERR

When the RX filter is taking too much time
and a new RX message is coming, the

RX FILTER _ERR interrupt is triggered. The
new RX message is discarded, see

not enabled for

Queue selected to

FIFO Queue RX_FILTER_CTRL register. The MH keeps
running on its current frame. Such interrupt
is a good indicator for SW to identify large
RX filtering time on some frames.

RX FIFO Queue |The RX FIFO RX ABORT IRQ The selected RX FIFO Queue defined after

the RX filtering process is disable. The MH

rejected by TX
filter

Descriptor is
filtered to ensure
only well-defined
TX message can go
through

reception receive the RX discards the RX message with the
message is not RX ABORT /IRQ interrupt. Every RX message
running, either not going to this disabled RX FIFO Queue will
set or wrongly set trigger this interrupt. The SW must ensure
RX FIFO Queues are enable at first time.
The RX Filter RX FILTER ERR In case the RX Filter identifies an RX FIFO
cannot send Queue to receive an RX message, but this
message to the RX queue is disable, the RX_FILTER_ERR
FIFO Queue as it is interrupt is triggered, and the current
disable message is discarded. The SW must ensure
RX FIFO Queues are enable at first time,
otherwise several interrupts will occur in a
row.
TX message The Header TX FILTER IRQ When a TX message is rejected, it will be

skipped by the MH. When the Header
descriptoris in a TX FIFO Queue, the next
message in the FIFO is used instead. An
acknowledge is sent to the TX descriptor
with the status rejected. Regarding TX
Priority Queue, the corresponding slot is

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

I
218 | 306

X_CAN

interface mixed
up

received to DMA
channel interface
detected by the
DMA

IS A TS,
Error source Interrupt MH behavior
disabled. The MH keeps running all other TX
FIFO Queues or slots defined as valid.
DMA channel Wrong data sent or|DMA CH ERR As such issue would mean data are mixed-up

between channels, there is no way to
recover. The MH finishes all pending data
transfers and then stops with MH_STS.BUSY
= 0. The system is notified through the
DMA_CH_ERR interrupt line. There is no
status flag assigned to such interrupt as the
DMA channel being faulty cannot be
identified.

Parity error on RX
message data

A bit flip is
detected on data
from the RX_MSG
to the AXI system
bus interface

DP_PARITY ERR

If such issue occurs while receiving data, the
RX message would be discarded. No
acknowledge data is sent. An interrupt
DP_PARITY ERR is triggered. The
SFTY_INT_STS.DP_RX_PARITY_ERR bit status
register is set to 1. As the RX message
would be aborted, the RX ABORT IRQ
interrupt would also be set. The MH keeps
going with new messages.

Parity error on TX
message data

A bit flip is
detected on
payload data from
the AXI system bus
interface to the
TX_MSG

DP_PARITY ERR

If such issue occurs while transmitting data,
the TX message would be aborted. An
interrupt DP_PARITY ERR would be
triggered. The
SFTY_INT_STS.DP_TX_PARITY_ERR bit status
register is set to 1. The 7TX ABORT IRQ
interrupt is set.

Parity error on RX
message
acknowledge
data

A bit flip is
detected on data
from the RX_MSG
to the AXI system
bus interface

DP_PARITY ERR

If such issue occurs on the acknowledge
data, the RX message would be discarded.
No acknowledge data is sent. An interrupt
DP _PARITY ERRis triggered. The
SFTY_INT_STS.ACK_RX_PARITY_ERR bit
status register is set to 1. The MH keeps
going with new messages.

Parity error on TX
message

A bit flip is
detected on

DP_PARITY ERR

If such issue occurs while acknowledging
the TX message. An interrupt

acknowledge payload data from DP _PARITY ERRis triggered. The
data the AXI system bus SFTY_INT_STS.ACK_TX_PARITY_ERR bit
interface to the status register is set to 1. The SW can
TX_MSG identify such issue reading the report status
of that TX descriptor.
RX message MH_CTRL.START |NONE The MH does not accept RX message data
Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

I
219 | 306

CAN bus not
successful

word received
from PRT

IS A TS,
X_CAN
Error source Interrupt MH behavior
received while bit wrongly set to from the PRT. As the PRT cannot sent data
MH not started 1 to the MH, a data overflow on the PRT will
occur leading to an interrupt.
PRT
RX data path DO code word NA The RX message is discarded. The already
overflow received from PRT. used RX descriptor are reused for the next
. Several issues message. Then, no status is sent back to the
could lead to such Header Descriptor in S_MEM.
issue, peak latency
preventing write
accesses in time or
RX path being
stopped or ...
RX message on |ABORT code word |nN4 This is normal behavior. The RX message is
CAN bus not received from PRT. discarded. The already used RX descriptors
successful Invalid CAN are allocated for the next message. No
message detected acknowledge data is sent back to the
on CAN bus S_MEM
TX data path DU code word NA The current TX message, selected and
underrun received from PRT. started on the MH side, is aborted but the
TX message data PRT keeps going with its current frame and
not provided in will generated a wrong CRC to invalidate the
time frame at the receiver side. All data transfers
from S_MEM is aborted. The issue may be
the result of a peak latency. The TX message
is still valid and will be part of the next TX-
Scan. The MH can restart to transmit the
same message according to the restart
counter setting. The PRT is triggered an
interrupt to the system when such code
word is transmitted to the MH. It is essential
to understand that the MH will still be active
and fully functional. There is no message
loss when such issue occurs
TX message on RESTART code NA The current TX message, selected and

started on the MH side, is aborted. All data
transfers from S_MEM is aborted. The
current TX message is still valid and will be
part of the next TX-Scan. The MH can restart
to transmit the same message according to
the restart counter setting or use another
one with highest priority .

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

I
220 | 306

X_CAN

to MH

IS A TS,
Error source Interrupt MH behavior
TX message HFI code word NA The current TX message is discarded, and a
header invalid received from PRT data acknowledge is sent back to the Header
Descriptor in S_ MEM. The report status of
the TX descriptor is updated with the issue.
If the TX message was in a TX FIFO Queue,
the MH keeps running and skips this TX
message to fetch the next one. In case of a
TX Priority Queue slot, the slot is set as
done but not sent (see report status in TX
descriptor)
Unexpected Start |When PRT detects |STOP /IRQ In case such code word is received, the MH
Of Sequence USOS, it stops and the PRT are no more synchronized. The
(USOS) at the CAN protocol MH finishes its current transfers and stops.
TX_MSG interface |operation and sets The STOP_/RQ interrupt is set to notify MH
ENABLE=0 is no more active. In such scenario the only
action would be to reset the MH and PRT to
recover.
PRT entered CAN |PRT stops CAN STOP_IRQ MH finishes all pending data transfers and
protocol’s Bus- |protocol operation then stops (put on hold). All FSM in the MH
Off state and sets go to idle. The STOP_/IRQ interrupt is set to
ENABLE=0 notify MH is no more active. A write to the
PRT stopped by |PRT stops CAN STOP IRQ MH_CTRL.START bit register allows the SW
SW protocol operation to restart everything at the point it was
and sets stopped, if required.
ENABLE=0
PRT TX_MSG PRT is having a DP TO ERR When the timeout assigned to the TX_MSG
interface not deadlock and interface fires, the MH finishes all pending
responding cannot answer to data transfers and then stops with
MH request or MH_STS.BUSY = 0. The DP_TO_ERR interrupt
receive data is triggered to the system, with the
ERR_INT_STS.DP_TX_TO_ERR bit status set
to 1
PRT RX_MSG PRT is having a DP_TO ERR When the timeout assigned to the RX_MSG
interface not deadlock and interface fires, the MH finishes all pending
responding cannot send data data transfers and then stops with

MH_STS.BUSY = 0. The DP_TO_ERR interrupt
is triggered to the system with the
ERR_INT_STS.DP_RX_TO_ERR bit status set
to 1

LOCAL MEMORY (L

_MEM)

Local memory
safety error while

The L_MEM is
providing a safety

MEM_SFTY ERR

As the corrupted data word is corrected, the
RX filtering can be done on the current RX

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

I
221 | 306

IS A TS,
X_CAN

Error source Interrupt MH behavior
reading RX filter |error on message. The MH keeps running and will be
element. MEM_SFTY CE able to receive new messages. The interrupt
Corrupted data [input signal while MEM _SFTY ERRis triggered to the system
has been reading a data with the SFTY_INT_STS.MEM_SFTY_CE bit
corrected status register set to 1. It is essential for

such issue that there is no error response on
the memory interface while reading the
corrected data.

Local memory
safety error while
reading TX
descriptor.
Corrupted data
has been
corrected

The L_MEM is
providing a safety
error on
MEM_SFTY CE
input signal while
reading a data

MEM_SFTY ERR

As the TX descriptor selected to be the next
message candidate is corrupted but
corrected, the related TX FIFO Queue or the
TX Priority Queue slot will run as normal.
The TX-Scan is reading a corrected TX
descriptor and will complete. The interrupt
MEM_SFTY ERRis triggered to the system,
with the SFTY_INT STS.MEM_SFTY _CE bit
status register set to 1. It is essential for
such issue that there is no error response on
the memory interface while reading the
corrected data.

Local memory
safety error while
reading RX filter
element.
Corrupted data is
not corrected

The L_MEM is
providing a safety
error on
MEM_SFTY UE
input signal while
reading a data with
SLVERR response

MEM_SFTY ERR

As no more filtering can be done on the
current RX message, it is discarded. As it is
not possible to keep going with a corrupted
RX filter element, the MH stops. The
interrupt MEM_SFTY ERR is triggered to the
system with the
SFTY_INT_STS.MEM_SFTY_UE bit status
register set to 1. The MH finishes all pending
data transfers and then stops with
MH_STS.BUSY = 0. It is essential for such
issue, to have the memory interface
reporting a SLVERR when reading the
corrupted data.

Local memory
safety error while
reading TX
descriptor.
Corrupted data is
not corrected

The L_MEM is
providing a safety
error on
MEM_SFTY UE
input signal while
reading a data with
a SLVERR
response

MEM_SFTY ERR

As it is not possible to keep going with a
corrupted TX descriptor, the MH stops. The
interrupt MEM_SFTY ERR is triggered to the
system if such issue occurs with the
SFTY_INT_STS.MEM_SFTY_UE bit status
register set to 1. The MH finishes all pending
data transfers and then stops with
MH_STS.BUSY = 0. It is essential for such
issue, to have the memory interface

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

I
222 | 306

X_CAN

access. A safety
issue is not
considered here

error response on
BRESP[1:0] for a
write access

IS A TS,
Error source Interrupt MH behavior
reporting a SLVERR when reading the
corrupted data.
Error response |The L_MEM is RESP_ERR[O] The TX descriptor written to the L_MEM is
received on local |providing a not valid. In such cases as the L_MEM
memory write DECERR/SLVERR cannot be trusted anymore, the MH stops.

The MH finishes all pending data transfers
and then stops with the MH_STS.BUSY = 0.
The RESP_ERR[O] interrupt is triggered to
the system. To identify the issue the
BRESP[1:0] and the ID of the transaction are
logged in the AXI_ERR_INFO.MEM_ID[1:0]
and AXI_ERR_INFO.MEM_RESP[1:0] bit
status register.

Error response
received on local
memory read
access. A safety
issue is not
considered here

The L_ MEM is
providing a
DECERR/SLVERR
error response on
RRESP[1:0] for a
read access

RESP ERR[1]

The TX descriptor or RX Filter element read
from the L_MEM is not valid. In such cases
as the L_MEM cannot be trusted anymore,
the MH stops. The MH finishes all pending
data transfers and stops with the
MH_STS.BUSY = 0. The RESP_ERR[O]
interrupt is triggered to the system. To
identify the issue the RRESP[1:0] and the ID
of the transaction are logged in the
AXI_ERR_INFO.MEM_ID[1:0] and
AXI_ERR_INFO.MEM_RESP[1:0] bit status
register.

A read from the |The MH does not |MEM TO ERR When the timeout assigned to the L_MEM
L_MEM cannot complete a read AXI read channel fires, the MH finishes all
complete within a defined pending data transfers and then stops with
time frame MH_STS.BUSY = 0. The MEM_TO_ERR
interrupt is triggered to the system and the
SFTY_INT_STS.MEM_AXI_RD_TO_ERR bit
status is set to 1
A write to the The MH does not |MEM TO ERR When the timeout assigned to the L_MEM
L_MEM cannot complete a write AXI write channel fires, the MH finishes all
complete within a defined pending data transfers and then stops with
time frame MH_STS.BUSY = 0. The MEM_TO_ERR
interrupt is triggered to the system and the
SFTY_INT_STS.MEM_AXI_WR_TO_ERR bit
status is set to 1
SYSTEM

Address decoding
error on DMA

Error response
from AXI system

RESP _ERR[O]

When the error is detected on the RX
message data or acknowledge data being

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

I
223 | 306

X_CAN

Error

source

Interrupt

MH behavior

write channels

bus interface,
DECERR received
on BRESP[1:0] for
write access

written, the interrupt RESP_ERR/[O] interrupt
is sent to the system. As the S_MEM is not
reliable, the MH stops. The MH finishes all
pending data transfers and stops with the
MH_STS.BUSY = 0. To identify the issue the
BRESP[1:0] and the ID of the transaction are
logged in the AXI_ERR_INFO.DMA_ID[1:0]
and AXI_ERR_INFO.DMA _RESP[1:0] bit
status register.

Address decoding
error on DMA
read channels

Error response
from AXI system
bus interface,
DECERR received
on RRESP[1:0] for
read access

RESP ERR[1]

When the error is detected on the TX
message data, RX or TX descriptors, the
interrupt RESP_ERR[1]is sent to the system.
As the S_MEM is not reliable, the MH stops.
The MH finishes all pending data transfers
and stops with the MH_STS.BUSY = 0. To
identify the issue the RRESP[1:0] and the ID
of the transaction are logged in the
AX|_ERR_INFO.DMA _ID[1:0] and
AXI_ERR_INFO.DMA_RESP[1:0] bit status
register.

System memory
CRC error or
Access to wrong
slave on DMA
write channel

Error response
from AXI system
bus interface,
SLVERR received
on BRESP[1:0] for
write access

RESP_ERR[0]

There is no way to identify the exact error
source, either a CRC error or a wrong slave
access.

See “Address decoding error on DMA write
channels” description in current table

System memory
CRC error or
Access to wrong
slave on DMA
read channel

Error response
from AXI system
bus interface,
SLVERR received
on RRESP[1:0] for
read access

RESP ERR[1]

There is no way to identify the exact source,
either a CRC error or a wrong slave access.
See “Address decoding error on DMA read
channels” description in current table

A read from the |The MH does not |DMA TO ERR When the timeout assigned to the S_MEM

S_MEM cannot |complete a read AXl read channel fires, the MH finishes all

complete within a defined pending data transfers and then stops with

time frame MH_STS.BUSY = 0. The DMA_TO_ERR

interrupt is triggered to the system, with the
SFTY_INT_STS.DMA_AXI_RD_TO_ERR bit
status set to 1

A write to the The MH does not |DMA TO ERR When the timeout assigned to the S_MEM

S_MEM cannot
complete

complete a write
within a defined

AXI write channel fires, the MH finishes all
pending data transfers and then stops with

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

I
224 | 306

X_CAN

225 | 306

Error

source

Interrupt

MH behavior

time frame

MH_STS.BUSY = 0. The DMA_TO_ERR

interrupt is triggered to the system with the
SFTY_INT_STS.DMA_AXI_WR_TO_ERR bit
status set to 1

1.4.5.30 Interrupts

Interrupt

Description

TX FQ IRQ[7:0]

When considering TX FIFO Queues, there is the option, thanks to the IRQ bit field
in TX Descriptor, to trigger an interrupt to the system, when a TX message is sent
successfully or skipped. This interrupt can only be declared in a TX Header
Descriptor (HD=1). When a TX descriptor has HD=0 and IRQ=1, no interrupt is
generated.

A dedicated interrupt signal 7X FQ /RQ/[n]is provided per TX FIFO queue n (0 <=
n <=7). When a TX Header Descriptor is mentioning an interrupt (IRQ bit set to 1)
and the message is successfully sent or skipped, the DESC_MESSAGE_HANDLER
identifies the TX FIFO queue source number of that descriptor and triggers the
relative line of the interrupt bus signal. The interrupt will be effective only when
the acknowledge data of that descriptor is fully written in S_ MEM.

It is then possible to define for a TX FIFO Queue n, with a fix number of
messages, the interrupt 7X_ FQ_/RQ[n] only to the last Header Descriptor. Doing
so, this approach will limit the number of interrupts to the system.

The main purpose of the TX FIFO Queue is to append on the fly new messages. A
race condition may occur between the SW and the Message Handler regarding
the definition of valid TX message in that queue. In case a TX FIFO Queue n does
not provide a valid TX descriptor, the MH notifies the SW with the 7X FQ /IRQ[n]
that the TX FIFO Queue n is on hold, despite being active.

The TX_FQ_INT_STS register provides the relevant information to detect the root
cause.

As a summary three different source of events can trig those interrupts:

e This interrupt is triggered when the IRQ bit field in TX Header Descriptor is
set to 1 and the TX message is sent successfully. The
TX_FQ_INT_STS.SENTI[nN] bit register is set to 1 for the TX FIFO Queue n
and the bit field STS[3:0] in the TX descriptor is set to 0'b0001

e This interrupt trigs when the TX message is skipped. The
TX_FQ_INT_STS.SENTI[nN] bit register is set to 1 for the TX FIFO Queue n
and the bit field STS[3:0] in the TX descriptor is set to 0'’b0010 or 0’b0011

e The TX FIFO Queue n execution is stopped due to the fetch of an invalid
TX descriptor in this gueue (no more TX message defined, and no END bit

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 226 | 306

Interrupt Description

set to 1 for the last TX message). The TX _FQ_INT_STS.UNVALID[nN] bit
register is set to 1 for the TX FIFO Queue n

RX FQ_IRQ[7:0] When considering RX FIFO Queues there is the option, thanks to the IRQ bit field
in RX descriptor, to trigger an interrupt to the system when an RX message is
received successfully. The interrupt bus signal RX FQ_/RQ[n] provides an
interrupt line for the RX FIFO queue n (0 <= n <=7).

When the DESC_MESSAGE_HANDLER fetches an RX descriptor for a given RX
message and identifies an IRQ bit set to 1 in one of them, it stores this
information. Once the RX message is received successfully and a IRQ bit set has
been detected in one RX descriptor, an interrupt is triggered. This interrupt is
triggered only when the acknowledge data (written in the Header Descriptor) is
fully written in the S_ MEM.

As a summary there are two options to define this interrupt bit in RX descriptors:

e In case the SW requires an interrupt per RX message, the IRQ bit in all RX
descriptors must be set to 1. This setting is valid for Normal and
Continuous mode with the same effect.

e The SW can set the IRQ bit in a regular interval along a RX FIFO Queue,
avoiding interrupts at every RX message. Only the RX message covering
the RX descriptor having this IRQ bit set will trigger an interrupt. In
Continuous mode, it is then possible to set an interrupt every two, three or
N messages. In Normal mode, the interrupt could be defined every two,
three or N RX descriptors According to the RX message size, several RX
descriptors will be used and so could trig the interrupt. It is important to
note that RX messages are received with various bit rate, thus the interrupt
time interval will not be identical.

A race condition may occur between the SW and the Message Handler regarding
the definition of valid RX descriptor in a queue. In case a RX FIFO Queue n does
not provide a valid RX descriptor in time, the interrupt notifies the SW with the
RX FQ IRQ[n] interrupt that the RX FIFO Queue n is on hold despite being active.

The RX_FQ_INT_STS register provides the related information to identify the root
cause.

As a summary two different source of events can trig those interrupts:

e This interrupt is triggered when the IRQ bit field in a RX Descriptor is set to
1 and the RX message is received successfully. The
RX_FQ_INT_STS.RECEIVEDIn] bit register is set to 1 for the RX FIFO
Queue n and the bit field STS[3:0] in the RX descriptor is set to 0’b0001

e The RX FIFO Queue n execution is stopped due to the fetch of an invalid
RX descriptor in this queue. The RX_FQ_INT_STS.UNVALIDI[n] bit
register is set to 1 for the TX FIFO Queue n

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 227 | 306
Interrupt Description
TX PQ IRQ A single 7X PQ /RQ interrupt is assigned to all TX Priority Queue slots. Any TX

Priority Queue slot can trigger an interrupt (IRQ = 1) when the relative TX
message is successfully sent or skipped. Any TX Header Descriptor having the IRQ
bit set and used by the TX Priority Queue trigs this interrupt line. When a new TX
message is defined in a TX Priority Queue slot, the TX descriptor used to define
this message must be valid.

When the message is sent, the slot is set to inactive and nothing else can occur.
Whereas the TX FIFO Queue, which is processing up to the point a TX descriptor
is invalid, the TX Priority Queue slot must not fetch any invalid descriptor. To
protect the execution of TX message and to have a common TX Queue
management, the TX priority Queue can also report invalid descriptor.

The SW need to look at the interrupt status register TX_PQ_INT_STSO and
TX_PQ_INT_STS1 to identify which slot has generated the interrupt and for which
reason.

As a summary three different source of events can trig this interrupt:

e This interrupt is triggered when the IRQ bit field in TX Header Descriptor is
set to 1 and the TX message is sent successfully. The
TX_PQ_INT_STSO0.SENT[n] bit register is set to 1 for the TX Priority
Queue slot n and the bit field STS[3:0] in the TX descriptor is set to
0’b0001

e This interrupt is triggered when the TX message is skipped. The
TX_PQ_INT_STSO0.SENTI[n] bit register is set to 1 for the TX Priority
Queue slot n and the bit field STS[3:0] in the TX descriptor is set to
0’b0010 or 0'’b0011

e The TX Priority Queue slot n execution is stopped due to the fetch of an
invalid TX descriptor in this queue (TX descriptor is not valid). The
TX _PQ_INT_STS1.UNVALID[N] bit register is set to 1 for the TX Priority
Queue slot n

STATS IRQ Four Statistic counters are used to monitor successful and unsuccessful RX and
TX messages. As soon as one of those counters overflows the S7TA7TS /RQ is
triggers to the system, refer to the RX and TX Statistics chapter for more details.
When looking at the STATS_INT_STS register, the SW can identify which counter
has reached its maximum value:
¢ When the number of unsuccessful RX message received has reached the
maximum counter value, the STATS_INT_STS.RX_UNSUCC is setto 1
e When the number of successful RX message received has reached the
maximum counter value, the STATS_INT_STS.RX_SUCC issetto 1
¢ When the number of unsuccessful TX message received has reached the
maximum counter value, the STATS_INT_STS.TX_UNSUCC is setto 1
e When the number of successful TX message received has reached the
maximum counter value, the STATS INT_STS.TX_SUCCissetto 1

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 228 | 306
Interrupt Description
STOP IRQ When the PRT is stop (ENABLE signal goes from high to low), the MH finishes its

current tasks. It puts all active RX/TX FIFO Queues on hold and discard all active
TX Priority Queue slots. Once done, the MH notifies such state by triggering the
STOP_IRQ interrupt.
The interrupt STOP_IRQ is raised under the following conditions only:
e TX FQ_STSO0 =0x0000 and RX_FQ_STSO0 = 0x0000 and TX_PQ_STSO =
0x00000000
e TX_FQ_STS0 = 0xXYXY and RX_FQ_STS0 = 0OxXWVWYV and
TX _PQ_STSO0 = 0x00000000, where XY defined the active and on hold TX
FIFO Queues and WV the active and on hold RX FIFO Queues

RX FILTER IRQ In order to track RX filtering results, an interrupt can be defined when a match is
detected on any defined RX filter element. The RX FILTER /RQ can only be
triggered if the IRQ bit in the RX filter element is set to 1 AND there is a match.
When a match is detected, the FM bit (set in RX message header) is set to 1 and
the filter element index is defined in the FIDX[7:0] bit field (set in the RX
message header).

Note: The BLK bit field in the RX Filter element is a side band information and is
not considered for the interrupt generation.

TX FILTER IRQ The interrupt is triggered when the TX filter is enabled, and a TX message is
rejected. Despite being rejected, the TX descriptor used to define the TX message
is acknowledged. To identify the TX descriptor allocated to the TX message
rejected, the STS[3:0] bit field in the TX descriptor is set to 0’b0100.

The TX_FILTER_ERR_INFO register provides the relevant information to identify
which TX FIFO Queue or TX Priority Queue slot is impacted.

TX ABORT IRQ This interrupt line is only triggered when the MH needs to abort a TX message
being sent to the PRT. This interrupt does not have any status flags, as it will
always be linked to functional or safety errors. Thus, another interrupt will
provide the require information related to the issue.
Several source of events can lead to this interrupt:

e TX address pointer parity error (refer to AP_PARITY_ERR interrupt)

e Timeouton S_MEM, L_MEM or PRT interface (refer to MEM_TO_ERR,
DMA_TO_ERR or DP_TO_ERR interrupt)
DMA channel routing error (refer to DMA_CH_ERR interrupt)
A TX_MSG sequence error (refer to DP_SEQ_ERR interrupt)
A DMA AXI or MEM AXI error response (refer to RESP_ERR interrupt)
An uncorrectable error detected on the L_ MEM (refer to MEM_SFTY_ERR
interrupt)
e A TX data parity error (refer to DP_PARITY_ERR interrupt)

Aborting a TX FIFO Queue or a TX Priority Queue slot does not set this interrupt
as no TX message abort is expected to occur (the MH will complete the current
TX message before aborting the TX FIFO Queue).

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 229 | 306
Interrupt Description
RX ABORT IRQ This interrupt line is triggered when the MH needs to abort a RX message

received from the PRT. This interrupt does not have any status flags, as it will
always be linked to functional or safety errors. Thus, another interrupt will
provide the require information related to the issue.

Several source of events can lead to this interrupt:

¢ An RX message is about to be sent to a disabled RX FIFO Queue.

¢ An RX message is in progress and the MH receives a new RX message at

the same time.

e RX address pointer parity error (refer to AP_PARITY_ERR interrupt)
Timeout on S_MEM, L_MEM or PRT interface (refer to MEM_TO_ERR,
DMA_TO_ERR or DP_TO_ERR interrupt)

DMA channel routing error (refer to DMA_CH_ERR interrupt)

A RX_MSG sequence error (refer to DP_SEQ_ERR interrupt)

A DMA AXI or MEM AXI error response (refer to RESP_ERR interrupt)

An uncorrectable error detected on the L_ MEM (refer to MEM_SFTY_ERR
interrupt)

A RX data parity error (refer to DP_PARITY_ERR interrupt)

e A RX descriptor error (refer to DESC_ERR interrupt)

e An overflow on RX DMA FIFO or on the RX descriptor acknowledge path

(refer to the DP_DO_ERR interrupt)

Aborting a RX FIFO Queue will never set this interrupt, as the MH will complete
its current reception before this action.

RX FILTER ERR This interrupt line is triggered when the RX filter has not finished in time, to
define the RX FIFO Queue number, before the reception of a new RX message. It
provides information to the SW about large RX filtering time. Refer to the RX
Filter chapter for detailed description. There is no status flag related to this
interrupt, as the second source of event, defined below, is a programming issue
and should never occur.
Two different sources of events can trig this interrupt:

e RXfiltering not finished before a new RX frame

e RXFIFO Queue to receive RX frame not running

MEM_SFTY ERR Safety error detected at the L_MEM interface. In fact, this interrupt is triggered
when either the MEM_SFTY CE or MEM_SFTY UE input signal is active.

To identify the root cause of such interrupt, refer to the SFTY_INT_STS register
Two different sources of events can trig this interrupt:

e The MEM_SFTY_UE input signal, when set, to indicate an uncorrectable
error from the L_MEM when reading (this signal must be generated by the
L_MEM memory controller). The SFTY_INT_STS. MEM_SFTY_UE bit
register is set to 1 in this case

e The MEM_SFTY_CE input signal, when set, to indicate a correctable error
from the L_MEM when reading (this signal must be generated by the

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 230 | 306

Interrupt Description

L_MEM memory controller). The SFTY_INT_STS. MEM_SFTY_CE bit
register is set to 1 in this case

REG CRC ERR CRC error detected on the register bank. This interrupt is triggered after a few
cycles if the CRC written in the CRC_REG.VAL[31:0], prior writing 1 to the
CRC_CTRL.START bit, is not matching the one computed in hardware. Such
interrupt event does not trig any actions in the MH. Therefore, it is a SW task to
do the appropriate actions to stop the MH.

DESC ERR CRC error detected on RX/TX descriptor or unexpected RX/TX descriptor
received. Status flags allow SW to identify the root cause of such interrupt, see
SFTY_INT_STS register.
Several source issues could lead to this interrupt:
e Whenthe SFTY_INT_STS.RX_DESC_CRC_ERR s setto 1, a RX
descriptor is received and is having a CRC error
e Whenthe SFTY_INT_STS.RX_DESC_REQ _ERRissetto 1, a RX
descriptor is received and is not compliant to the one requested (wrong RX
FIFO Queue, wrong instance number, wrong position in the queue, ...)
e Whenthe SFTY_INT_STS.TX_DESC_CRC_ERR s setto 1, a TX
descriptor is received and is having a CRC error
e Whenthe SFTY_INT_STS.TX_DESC_REQ_ERRissetto1,aTX
descriptor is received and is not compliant to the one requested (wrong TX
FIFO Queue, wrong instance number, wrong position in the queue, wrong
TX Priority Queue slot...)

The DESC_ERR_INFOO and DESC_ERR_INFO1 registers provide a detailed
description of the faulty RX/TX descriptor. Only the first RX/TX descriptor error
will lead to an update of those registers, in case several ones occur. To capture
the next descriptor error information, the SW must clear the interrupt source.

AP_PARITY ERR Address pointers used to manage TX FIFO Queues, RX FIFO Queues and TX
Priority Queue are protected using parity bit (1bit per byte). Any issue detected
trigs this interrupt. The parity bits are checked only when the address pointer is
used for S MEM accesses. Status flags allow SW to identify the root cause, see
SFTY_INT_STS register.
Several source issues could lead to this interrupt:
e Whenthe SFTY_INT_STS.AP_RX PARITY_ERR is setto 1, an address
pointer used to manage the RX path is having a parity error
e Whenthe SFTY_INT_STS.AP_TX_PARITY_ERR is set to 1, an address
pointer used to manage the TX path is having a parity error

DP _PARITY ERR Parity error detected on RX message data received from PRT to AXI system bus or
TX payload data transmitted from AXI system bus to PRT. Any issue detected trigs
this interrupt. Status flags allow SW to identify the root cause, see SFTY_INT_STS

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 231 | 306

Interrupt Description

register.
Several source issues could lead to this interrupt:
e Whenthe SFTY_INT_STS.DP_RX PARITY_ERR is setto 1, a RX
message data is having a parity error
e Whenthe SFTY_INT_STS.DP_TX PARITY_ERRissetto1,aTX
message data is having a parity error

DP_SEQ ERR The RX_MSG or TX_MSG interface used to synchronize the MH and PRT data
exchange is not functional. A wrong PRT or MH behavior could lead to this issue.
A problem on the logic managing the clock domain crossing on RX_MSG or
TX_MSG interface may be one of the source issues. Status flags are available to
identify the faulty interface, see ERR_INT_STS register.
Several source issues could lead to this interrupt:

e Whenthe ERR_INT_STS.DP_RX _SEQ_ERRis setto 1, an issue is

detected on the RX_MSG interface

e Whenthe ERR_INT_STS.DP_TX SEQ_ERR s setto 1, anissue is
detected on the TX_MSG interface

DP DO _ERR An overflow is detected on the RX data path or while acknowledging a RX/TX
descriptor. Some status flags are provided to identify the interrupt source, see
ERR_INT_STS register

Several source issue could trig this interrupt:

e When the ERR_INT_STS.DP_RX_FIFO_DO_ERR is setto 1, an RX DMA
FIFO overflow is detected. Several reasons could explain such issue: a
very high system latency (over the expected limit considered for the MH), a
system memory no more accessible and a wrong MH behavior.

e When the ERR_INT_STS.DP_RX_ACK_DO_ERR s setto 1, an ACK
DMA FIFO overflow is detected. Such issue occurs when the
acknowledgment of an RX descriptor is not possible due to some pending
ones. A system memory not accessible or a wrong MH behavior (DMA
controller not functional, deadlock on RX/TX acknowledge path) could
explain such issue.

e When the ERR_INT_STS.DP_TX_ACK_DO_ERR is setto 1, an ACK DMA
FIFO overflow is detected. Such issue occurs when the acknowledgment of
a TX descriptor is not possible due to some pending ones. A system
memory not accessible or a wrong MH behavior (DMA controller not
functional, deadlock on RX/TX acknowledge path) could explain such issue

DP TO ERR When the PRT is not responding after a certain amount of time, either on RX or
on TX path, the DP_TO_ERR interrupt is triggered. The counter on RX_MSG or
TX_MSG interface starts with the Start Of Frame and stop when receiving the
timestamp. The timeout value is programmable by SW, refer to the Programming
Guidelines chapter for more details. Some status flags provide the interrupt
source, see SFTY_INT_STS register.

Several source issue could trig this interrupt:

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 232 | 306

Interrupt Description

e Whenthe SFTY_INT_STS.DP_PRT_RX_TO_ERR is set to 1, the timeout
value defined on the RX_MSG interface is over. The PRT or MH may be
locked, preventing data reception

e Whenthe SFTY_INT_STS.DP_PRT_TX TO_ERR is set to 1, the timeout
value defined on the TX_MSG interface is over. The PRT or MH may be
locked, preventing data transmission

DMA TO ERR When the S_MEM is not responding after a defined time interval, the

DMA TO_ERRis triggered. The timeout value is programmable by SW, refer to the
Programming Guidelines for more details. Some status flags provide the interrupt
source, see SFTY_INT_STS register.

Several source issue could trig this interrupt:

e Whenthe SFTY_INT_STS.DMA_AXI_RD_TO_ERR is set to 1, the timeout
value defined on the DMA AXI read channel interface is over. A system
memory no more accessible or a DMA controller in deadlock could explain
such issue.

e Whenthe SFTY_INT_STS.DMA_AXI WR_TO _ERR is setto 1, the
timeout value defined on the DMA AXI write channel interface is over. A

system memory no more accessible or a DMA controller in deadlock could
explain such issue.

MEM_TO_ERR When the L_MEM is not responding after a defined time interval the MEM TO ERR

is triggered. The timeout value is programmable by SW, refer to the Programming

Guidelines for more details. Some status flags are provided to identify the

interrupt source, see SFTY_INT_STS register.

Several source issue could trig this interrupt:

e Whenthe SFTY_INT_STS.MEM_AXI RD TO_ERR is set to 1, the timeout
value defined on the MEM AXI read channel interface is over. A local

memory no more accessible or a memory controller in deadlock could
explain such issue.

e When the SFTY_INT_STS.MEM_AXI_WR_TO_ERR is set to 1, the
timeout value defined on the MEM AXI write channel interface is over. A

local memory no more accessible or a memory controller in deadlock could
explain such issue.

DMA _CH ERR Data received or sent are not routed to or from the right DMA channels. Such
issue will lead to data corruption and wrong MH behavior. There are no status
flags to identify the source channel being faulty.

RESP ERR[1:0] Any error response from the DMA AXl and MEM AXI interfaces can lead to a
RESP_ERR[1:0] interrupts. Some status flags provide the interrupt source, see
SFTY_INT_STS register.

Several source issue could trig those interrupts:

e When the RESP_ERR[O0] interrupt is set, a write access error is detected
on either the DMA_AXI or MEM_AXI write channel.

Version 3.9

28 February 2024
ME-IC/PAY

Bosch Automotive Electronics

X_CAN 233 | 306

Interrupt Description

e When the RESP_ERR[1] interrupt is set, a read access error is detected on
either the DMA_AXI or MEM_AXI read channel.

The AXI_ERR_INFO register provides a detailed description of the faulty AXI
interface, refer to the AXI_ERR_INFO.MEM_RESP[1:0] or

AXI_ERR_INFO.DMA RESP[1:0] bit field to determine which one (must be
different from 0’b00).

The traffic getting the error response is defined when looking at the
AXI_ERR_INFO.MEM_ID[1:0] (if AXI_ERR_INFO.MEM_RESP[1:0] is different from
0’b00) or AXI_ERR_INFO.DMA_ID[1:0] bit field (if AXI_.ERR_INFO.DMA_RESP[1:0]
is different from 0’b00).

In case several response errors occur on the same interface, only the AXI ID of
the last one is captured.

1.4.5.31 Clock and Reset

There is only one clock CLAK to drive the whole core logic.

A clock CLK _AX/is used at the host interface, this clock is synchronous to CLK clock.

The only reset available is the RESET N signal, it is asynchronously asserted (set to low) and
synchronously de-asserted.

To lower power consumption, the MH can have its core clock CLA disabled. Registers can still be
programmed through the host interface (CLK AX/ clock still active)

The CLKand CLK AX/ are used only with the rising edge, this means they can be defined with some
spread to lower EMI.

As the MH uses only the rising edge of the CLK_AXI and CLK, the duration of the clock's high pulse
may vary between 10% and 90% of the clock period during operation.

The PRT signalizes via ENABLE whether it is active and requires message handling or not.

e When this signal is going low, the MH will stop its current activities. This means the RX/TX FIFO
queues and TX Priority Queue are put on hold as well as all the relevant traffic from and to the
S_MEM. Once it is done, the bit status MH_STS.BUSY is set to 0 and the CLK clock signal of the
MH can be stopped.

e When the ENABLE is already low and the MH_STS.BUSY bit status is set to O, nothing prevents
the SW to switch off the CLK clock signal.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 234 | 306

1.4.6 Application Information

This section describes some general information related to MH performances, flags to be look at and
cluster guidelines.

1.4.6.1 Queue Status Flags

The TX FIFO Queue status is defined according to the bit status in the TX_FQ_STSO register, see table

below:
TX_FQ_STSO. | TX_FQ_STSO. Status for TX FIFO QUEUE n
BUSY[n] STOP[n] (n€{0,1, ..., 31)
0 0 Inactive: The TX FIFO Queue can be programmed and started if enabled
0 1 na
1 0 Active and running: The TX FIFO Queue is enabled and has been started.
TX messages are sent whenever possible to the PRT
1 1 Active and on hold: When considering no functional or safety errors, this
status is reached when an invalid TX descriptor is fetched from S_MEM.

The TX Priority Queue slot n status is defined according to the bit status in the TX_ PQ_STSO register,
see table below:

Status for TX PRIORITY QUEUE slot n

TX_PQ_STS0.BUSY[n] (n € {0, 1 31)
n 7 Ug aoe

0 Inactive: The TX Priority Queue slot n can be programmed and started if enabled
1 Active and running: The TX Priority Queue slot n is enabled and has been
started. TX message in the slot n can be transmitted whenever possible

Compared to the TX FIFO Queues, there is no STOP bits. Any errors related to a TX Priority Queue slot
execution sets the slot as inactive.

The RX FIFO Queue status is defined according to the bit status in the RX_FQ_STSO register, see table

below:
RX_FQ_STSO. | RX_FQ_STSO. Status for RX FIFO QUEUE n
BUSY[n] STOP[n] (n€{0, 1, .., 31)
0 0 Inactive: The RX FIFO Queue can be programmed and started if enabled
0 1 na
1 0 Active and running: The RX FIFO Queue is enabled and has been started.
RX messages can be received from the PRT
1 1 Active and on hold: When considering no functional or safety errors, this
Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 235 | 306
RX_FQ_STSO. | RX_FQ_STSO. Status for RX FIFO QUEUE n
BUSY[n] STOP[n] (n€{0,1,..,31)
status is reached when an invalid RX descriptor is fetched from S_MEM.

1.4.6.2 Cluster

The same L_MEM can be shared across several Message Handler, but several points need to be
highlighted. A trade-off needs to be found to ensure every MH will get enough time to complete their
RX filter process as well as their TX-Scan for a given L_MEM bandwidth.

e The worst scenario on RX path is defined when all MH in a cluster is receiving an RX message at
the same time. Therefore, it is essential to ensure the available bandwidth on the L MEM is
able to support the RX filter process from all concurrent MH. Several measures can be taken to
lower the bandwidth for a given value: limit the number of RX filter elements and the number
of comparison (1 or 2) per filter element.

e The worst scenario on TX path is defined by all TX FIFO queues active for every MH as well as
new TX messages being added to all TX Priority Queue slots. As one message is added or sent
at a time for every MH, the impact of the TX-Scan may be limited but may play an important
role by generating more arbitration occurrences

e The read latency to access the L_MEM is a common factor for all MH and should be as low as
possible. This access time is driven the overall performances when in cluster mode

1.4.6.3 Performances
Several processing times have a direct impact on the overall MH performances, see sections below.
1.4.6.3.1 Core Clock Frequency

The minimum MH core clock frequency is driven by several parameters:
e The maximum number of RX filter elements to support
e The Classical CAN, CAN FD, and CAN XL bit rates (Arbitration and Data Phase)
e The L_MEM read latency
e The maximum number of TX FIFO Queues
e The maximum number of TX Priority Queue slots

To estimate the minimum core clock frequency to set, please refer to excel file [6]. One must keep in

mind that the computed value is a minimum. Other clock frequency constraints may require a higher
clock speed on the MH.

1.4.6.3.2 TX-Scan

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 236 | 306

The TX-Scan does compute the highest priority message over the TX FIFO queues and the TX Priority
Queue slots. The processing time is mainly link to the number of TX FIFO Queues active at the same
time as well as the number of TX Priority Queue slots being set active. The higher the number of slots
and TX FIFO queues active, the higher the bandwidth from the L_MEM. The sooner the result is known
the better the expected transmission order is. For more detail on TX-Scan refer to the TX-Scan
chapter.

1.4.6.3.3RX Filter

As the RX filter elements are defined and read from the L_MEM, any RX message received will
generate many accesses. The number of RX filter elements and the number of comparisons per
element drive the bandwidth from the L_MEM and so the processing time. The higher the number of
filter elements the higher it takes to define if an RX message is accepted or rejected. Despite some
measures are in place to avoid discarding the current RX message, the SW would need to sort the non-
dispatched messages later on. For more detail on RX Filter refer to the RX Filter chapter.

The process of filtering is started as soon as the first RX message header data is received. When an RX
filter element expects an RX data word that is not already stored, the process stops and waits for the
RX data word. As the RX filter element are fetched linearly from the L_MEM, it is required to have
them organized in a specific way to optimize the filtering time. The Classical CAN with a low bit rate
does provide more margin to complete the RX filtering in time. The critical path is defined when
receiving CAN FD frame with no payload data.
As a general rule, it is recommended to defined RX filter elements in this order:
e First: CAN FD, assuming that only one comparison with the first message header word is required
e Second: CAN XL, assuming either one or two comparisons could be defined
e Third: Classical CAN , assuming that only one comparison with the first message header word is
require
Such RX filter elements organization will optimize the overall processing time.

1.4.6.3.4 RX/TX Descriptors Memory Organization

RX/TX descriptors are fetched from the S_MEM. The DMA controller is reading and writing data to the
S_MEM using burst length of various sizes. As soon as the address to read or write data is aligned on
burst length of 8, all the following burst transfer are using maximum burst length of 8. If the address
to fetch the RX/TX descriptor does cross a burst of 8 boundary, two read accesses are required.

TX path:
As the TX header descriptor is store locally in the MH there is no constraint regarding the access time
from the S_ MEM. Nevertheless, several recommendations will help to increase access performances
and to limit power consumption:

e Align TX FIFO Queue start address on maximum burst length (8 word of 32bit)

e Align TX Priority Queue start address on maximum burst length (8 word of 32bit)

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 237 | 306

e Define TX FIFO/Priority Queues (linked list of TX descriptors) in SRAM to leave more time for
payload data fetching. This is best practice to declare TX descriptor in SRAM whenever
possible

RX path:
RX descriptors fetches are driving the RX messages write to S_MEM. On top of it, if the RX filtering is
taking too much time, an RX DMA FIFO overflow may occur. Several recommendations will help to
increase access performances and to limit power consumption:
e Align RX FIFO Queue start address on maximum burst length (8 word of 32bit)
e Define RX FIFO Queues (linked list of RX descriptors) in SRAM to leave more time for RX
filtering. This is best practice to declare RX descriptor in SRAM whenever possible

1.4.6.3.5 Data Payload Buffer Memory Organization

Any accesses done from or to the S_ MEM by the DMA will be fully optimized is the address is aligned
on the maximum burst length (8x32bit).
TX path:
e Align data container start address on maximum burst length (8 word of 32bit)
e Use data container size multiple of maximum burst length (8 word of 32bit)
RX path:
e Align data container start address on maximum burst length (8 word of 32bit), whatever the
mode (Normal or Continuous)
e Use data container size multiple of maximum burst length (8 word of 32bit)

1.4.6.3.6 High System Memory Latency

The maximum system memory latency is driven by the Classical CAN, CAN FD, and CAN XL bit rates
(Arbitration and Data Phase) and can be computed using the excel file [6].

If the latency time to get the first payload data burst is greater than the computed value, an underrun
will occur when starting to transmit a TX message to the PRT. As many DMA requests may occur to the
system bus at the same time, some critical scenarios could lead to delay the fetch of the first payload
data, providing underrun. If one of the TX descriptor DMA requests is pre-empting the access to the
first payload data for the current TX message, the delay would be larger than the one expected. As an
example, starting all TX FIFO Queues and TX Priority Queue slots at the same time may increase the
probability to have an underrun.

As a matter of fact, very high system latency may lead to underrun due to the high constraints on burst
accesses. The data underrun is a warning and won't affect the MH behavior and the order of the TX
messages. No TX message with underrun is dropped and it will still be considered in the next TX-Scan

run.
Nevertheless, here below are a list of recommendations to avoid and limit issues in a system with high
latency:

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 238 | 306

TX path:

Every TX descriptor and its payload data are fetched from the S_ MEM. The payload data is only read
from the S_MEM when the TX message (defined by its TX descriptor) started to be transmitted on the
CAN bus (meaning the message has won the CAN bus arbitration). Thus, in case of very high latency
system, a data underrun may occur on the PRT. As a matter of fact, the critical path is defined by the
first bunch of payload data to be fetched. Several actions can be done to cope with high system
latency:

e Align data container start address on maximum burst length (8 word of 32bit)

e Align TX FIFO Queue start address on maximum burst length (8 word of 32bit)

e Align TX Priority Queue start address on maximum burst length (8 word of 32bit)

e Use data container size multiple of maximum burst length (8 word of 32bit)

e The usage of write outstanding transaction may not provide a significant improvement as the
write accesses are somehow sequential. Nevertheless, it is recommended to set it to the
maximum value, see AXI_PARAMS.AW_MAX_PEND[1:0] bit register

e Make use of read outstanding transaction (this is mandatory to avoid cases where DMA channel
are competing against each other to read the S_MEM). The maximum value is recommended,
see AXI_PARAMS.AR_MAX PENDI[1:0] bit register

e Define TX FIFO/Priority Queues (linked list of TX descriptors) in SRAM to leave more time for
payload data fetching. This is best practice to declare descriptor in SRAM whenever possible

RX path:

Every RX descriptor is fetched from the S_ MEM. As for the TX path, the critical path is defined by the
first RX descriptor to be fetched, once the RX FIFO Queue number is defined by the RX filter. As soon
as the RX FIFO Queue is known, there is still some time required to read the corresponding RX
descriptor and to write the data payload to the S_ MEM. To avoid any RX DMA FIFO overflow and to
limit the constraints at system level, the faster the RX descriptor is read from the S_ MEM the faster
the payload data can be written to the S_ MEM. Nevertheless, several actions can be done to cope with
high system latency:

e Align data container start address on maximum burst length (8 word of 32bit)

e Align RX FIFO Queue start address on maximum burst length (8 word of 32bit)

e Use data container size multiple of maximum burst length (8 word of 32bit)

e The usage of write outstanding transaction may not provide a significant improvement as the
write accesses are somehow sequential and the RX DMA FIFO sized to support high latency.
Nevertheless, it is recommended to set it to the maximum value, see
AXI_PARAMS.AW_MAX_PENDI[1:0] bit register

e Make use of read outstanding transaction (this is mandatory to avoid cases where DMA channel
are competing against each other to read the S_MEM). The maximum value is recommended,
see AXI_PARAMS.AR_MAX_PEND[1:0] bit register

e Define RX FIFO Queues (linked list of RX descriptors) in SRAM to shorter the reaction time when
receiving an RX message. This is best practice to declare descriptor in SRAM whenever
possible

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 239 | 306

1.4.7 Programming Guidelines

Here below are the general procedures to program the MH.
1.4.7.1 Initial MH Start Procedure

Before starting any process, the SW driver must ensure the MH core clock is active
(MH_STS.CLOCK_ACTIVE = 1). It is assumed that the CLK AX/ clock to access to the MH register bank
is up and running.
Here is the procedure:
1) Configure the MH global registers:
e The MH_CFG.INST_NUM[2:0] bit field to indicate the X_CAN instance number
e The MH_SFTY_CFG and MH_SFTY_CTRL registers according to the safety measures to apply
e The AXI_ADD_EXT register if the DMA AX/ address bus interface is greater than 32bit
The AXI_PARAMS register to define read and write outstanding
e The RX_STATISTICS and TX_STATISTICS registers must be set to O to ensure status of new
transmissions and receptions (successful or unsuccessful) are properly incremented in those
counters
2) Configure the RX Filter, see RX Filter Setting section
3) Configure the TX Filter, see TX Filter Setting section
4) Configure the RX FIFO Queues up to the start step, see RX FIFO Queue Initial Start section
5) Configure the TX FIFO Queues up to the start step, see TX FIFO Queue Initial Start section
6) Prepare TX Priority Queue, see TX Priority Queue Initialization section and define TX Priority Queue
slots (if any) up to the start step, see Starting TX Priority Queue Slot section
7) Unmask error and safety interrupts as well as functional interrupts which are relevant in the
interrupt controller
8) Compute the CRC of the registers protected by CRC and write the value to the CRC_REG register.
Then, write to the CRC_CTRL.START bit register to do the CRC checking. Any CRC issue triggers an
REG CRC ERR interrupt to the system
9) Write Ob1 to the MH_CTRL.START bit register to start the MH. As long as the PRT is not started
(MH_STS.ENABLE = 0) and there is no active RX/TX FIFO queue or TX Priority Queue slot
(MH_STS.BUSY = 0), the MH_CTRL.START bit can still be set back to 0
10) Start the RX FIFO Queues writing to the RX_FQ_CTRLO register. Once a RX FIFO Queue starts, the
registers related to that queue and defined in 4) are write protected (excepted the RX_ FQ_CTRL2
register). As soon as one RX FIFO Queue is active, the MH_CTRL.START bit register cannot be
modified. This means, it is no more possible to stop the MH without stopping the PRT
11) Start the PRT and wait for the MH_STS.ENABLE to be set to 1, meaning the PRT is up and running
12) Start the relevant TX FIFO Queues writing to TX_FQ_CTRLO register. Once a TX FIFO Queue starts,
the registers related to that queue and defined in 5) are write protected (excepted the TX_FQ_CTRL2
register)
13) Start the relevant TX Priority Queue slots writing to the TX_PQ_CTRLO register

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 240 | 306

1.4.7.2 Stopping MH Procedure

As the PRT is the physical link to the CAN bus, once everything is started (PRT and MH), the MH can
stop only if the PRT is switched off (ENABLE signal going from High to Low leading to
MH_STS.ENABLE bit status set to 0).

For more details on the different conditions to have the CAN protocol operation stopped (namely
normal stop, immediate stop or Bus-Off), refer to the PRT chapter. As there is no way for the MH to
identify the exact root cause of the PRT stop, the MH performs some actions and will leave the SW to
finalize the procedure defined in section Full Stop:

Actions done by the MH when the PRT is switched off:

e When receiving a RX message and if the PRT is having an immediate stop, the RX message is
discarded. An RX ABORT_IRQ interrupt is generated

e When receiving a RX message and if the PRT is having a normal stop, the RX message reception
is completed

e When transmitting a TX message and if the PRT is having an immediate stop, the TX message is
aborted. A TX_ ABORT_IRQ interrupt is generated

e When transmitting a TX message and if the PRT is having a normal stop, the TX message
transmission is completed

e All active RX FIFO Queue n (n € {0, 1, ..., 7}) are put on hold, this means no RX message can be
received. The RX_FQ_STS0.STOP[n] and RX_FQ_STS0.BUSY[n] bit registers for those queues
are set to 1. The other inactive RX FIFO Queues status flags (busy and stop) remain set to O.

e All active TX FIFO Queue n (n € {0, 1, ..., 7}) are put on hold, this means no TX message can be
transmitted. The TX_FQ_STS0.STOP[n] and TX_FQ_STS0.BUSY[n] status registers for those TX
FIFO Queues are set to 1. The other inactive TX FIFO Queues status flags (busy and stop)
remain set to O.

e ALl TX Priority Queue slots are set inactive, this means the TX_PQ_STS0.BUSY[31:0] status
register is set to 0Ox00000000

1.4.7.2.1.71 Full Stop

The RX/TX FIFO Queues linked list are set back to their initial value defined by their respective
registers. To complete the procedure, the SW must abort all the RX/TX FIFO Queues being still
actives, see Aborting RX FIFO Queue and Aborting TX FIFO Queue sections. Once done, the
MH_STS.BUSY bit register is set to 0. With the MH_STS.BUSY = 0 and the MH_STS.ENABLE = O, the MH
can be stopped writing 0 to the MH_CTRL.START bit register. At this point, the MH can be entirely
reprogrammed.

Summary for a full stop of the MH:
1) Stop PRT

2) Abort all TX Priority Queue slots
3) Abort all RX FIFO Queues

4) Abort all TX FIFO Queues

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 241 | 306

5) Write MH_CTRL.START=0 (unlocks the MH global configuration registers)

1.4.7.3 RX FIFO Queue Initial Start

For the RX FIFO Queues, some common configuration registers need to be set prior any start. It is
essential to note that those registers are write-protected when the MH is started (MH_CFG.START =
1):
e The MH_CFG.INST_NUM[2:0] bit field to indicate the X_CAN instance number
e The MH_CFG.RX_CONT_DC bit register to select either the Normal or Continuous mode for all
RX FIFO Queues
e The MH_SFTY_CFG and MH_SFTY_CTRL registers according to the safety measures to apply
e The AXI_ADD_EXT register if the DMA AX/ address bus interface is greater than 32bit
e The AXI_PARAMS register to define read and write outstanding
e The RX_FILTER_MEM_ADD register to define address of the RX Filter elements and RX Filter
reference/mask address in the L_MEM
e The RX_FILTER_CRTL register to define how the RX filter must behave when enabled

Before starting a RX FIFO Queue n in Normal mode several configuration registers need to be defined:

e The RX_FQ_START_ADD{n} register defines the address of the First RX Descriptor of the linked
list

e The RX_FQ_SIZE{n}.MAX_DESC bit field register provides the size of the linked list in number of
RX descriptors. The memory area is then computed with the formula:
RX_FQ_SIZE{n}.MAX_DESC * 16byte

e The RX_FQ_SIZE{n}.DC_SIZE bit field register provides the size of the data container attached
to every RX descriptor

e The RX_FQ_CTRL2.ENABLE[N] bit register to enable the RX FIFO Queue n before a start.

Before starting a RX FIFO Queue n in Continuous mode several configuration registers need to be
defined:
e The RX_FQ_START_ADD{n} register defines the address of the First RX Descriptor of the linked
list
e The RX_FQ_SIZE{n}.MAX_DESC bit field register provides the size of the linked list in number of
RX descriptors. The memory area is then computed with the formula:
RX_FQ_SIZE{n}.MAX_DESC * 16byte
e The RX_FQ_SIZE{n}.DC_SIZE bit field register provides the size of the single data container
attached to all RX descriptors
e The RX_FQ_DC_START_ADD{n} register provides the base address of the single data container
defined for the RX FIFO Queue n and attached to all RX descriptors of that queue
e The RX_FQ_RD_ADD_PT{n} register provides the read address pointer used by the SW to read
an RX message in the data container
The RX_FQ_CTRL2.ENABLE[N] bit register to enable the RX FIFO Queue n before a start

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 242 | 306

In order to define and start a RX FIFO Queue n, do the following:

e A RXFIFO Queue can only start if the MH_CTRL.START bit register is set to 1 (refer to the
Initial MH Start Procedure section)

e The SW must check the RX_FQ_STS0.BUSY[n] and RX_FQ_CTRL2.ENABLE[n] (n € {0, 1, ..., 7})
bit registers are set to 0 (RX FIFO Queue n not already active and enabled). With such bit
configuration the RX_FQ_STS0.STOP[n] bit register must be equal to 0

e Configure the start address of the RX descriptor linked list, for the RX FIFO Queue n, using the
RX_FQ_START_ADD{n} (n € {0, 1, ..., 7}) register

e Configure the maximum number of defined RX descriptors in the linked list, for the RX FIFO
Queue n, using the RX_FQ_SIZE{n}.MAX_DESC[9:0] (n € {0, 1, ..., 7}) register. The memory
size allocated is expected to be RX_FQ_SIZE{n}.MAX_DESC[9:0] * 16byte (RX descriptor size).
To avoid changing the rolling counter bit field in the RX descriptor (see RC[4:0] in RX
descriptor chapter), from time to time and after a wrapping, set the
RX_FQ_SIZE{n}.MAX_DESC[9:0] bit field as a multiple of 32

e Defined in S_ MEM the RX descriptors linked list for the RX FIFO Queue n. Those RX descriptors
are continuous in S_MEM and must be prepared before starting the RX FIFO Queue. Only valid
RX descriptors (VALID bit set to O in descriptor) can ensure the reception of RX messages

e In case of Normal mode, a dedicated RX data container must be defined in S_MEM per RX
descriptor. For a given RX FIFO Queue, data containers are of the same size and defined in
RX_FQ_SIZE{n}.DC_SIZE[6:0] bit field register. The memory size expected per RX data
container is equal to RX_FQ_SIZE{n}.DC_SIZE[6:0] * 32byte

e In case of Continuous mode, only a single RX data container must be declared for a RX FIFO
Queue n. The RX_ FQ_DC_START ADD{n} (n € {0, 1, ..., 7}) register defines the start address of
that container and the RX_FQ_SIZE{n}.DC_SIZE[11:0] (n € {0, 1, ..., 7}) its size. The memory
size to be allocated to that data container is equal to RX_FQ_SIZE{n}.DC_SIZE[11:0] * 32byte.

e In case of Continuous mode, the RX_FQ_RD_ADD_PT{n} (n € {0, 1, ..., 7}) register must be
initialized to {RX_ FQ_DC _START ADD{n}.VAL[31:1] & Ob11} otherwise left to its default value

e Unmask the interrupt RX FQ /RQ[n] (n € {0, 1, ..., 7}) on the interrupt controller

e Enable the RX FIFO Queue n writing 1 to the RX_FQ_CTRL2.ENABLE[n] (n € {0, 1, ..., 7}) bit
register

e Start the RX FIFO Queue n writing 1 to the RX_FQ_CTRLO.START[n] bit register prior starting
the PRT

e Wait for the RX_FQ_STS0.BUSY[n] (n € {0, 1, ..., 7}) bit status register to be set to 1. The RX
FIFO Queue n is considered as active, meaning the RX_FQ_STS0.BUSY[n] bit register is set to 1
and running when the RX_FQ_STS0.STOP[n] bit register is set to O

As soon as the RX_FQ_STS0.BUSY[n] = 1, the RX_FQ_START_ADD{n}, RX_FQ_SIZE{n},
RX_FQ_RD_ADD_PT{n} and RX_FQ_DC_START_ADD{n} (n € {0, 1, ..., 7}) configuration registers are
write-protected for the RX FIFO Queue n.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 243 | 306

1.4.7.4 Restarting a RX FIFO Queue

When the MH receives a RX message and there is no valid RX descriptor (VALID bit not set to 0) to
write data to the S_MEM, the RX FIFO Queue n is put on hold (RX_FQ_STS0.BUSY[n] = 1 and
RX_FQ_STSO0.STOP[n] = 1). When such event occurs, the RX message is discarded and the
RX_FQ_IRQ[n] interrupt is triggered to the system. Whatever the mode, Normal or Continuous, a
restart is required to set the RX FIFO Queue n back to running. Only an active and running RX FIFO
Queue can receive RX messages.

In order to restart a RX FIFO Queue n, do the following:

e A RXFIFO Queue can only restart if the MH_CTRL.START bit register is set to 1

e The SW must ensure RX_FQ_STS0.BUSY[n], RX_FQ_STS0.STOP[n] and
RX_FQ_CTRL2.ENABLE[n] (n € {0, 1, ..., 7}) bit status registers are all set to 1. In this
configuration, the RX_FQ_START_ADD{n}, RX_FQ_SIZE{n}, RX_FQ_RD_ADD_PT{n} and
RX_FQ_DC_START ADD{n} (n € {0, 1, ..., 7}) configuration registers are write-protected

e Start the RX FIFO Queue n writing 1 to the RX_FQ_CTRLO.START[n] bit register.

e Wait for the RX_ FQ_STS0.STOP[n] bit register to be set to 0, to ensure the RX FIFO Queue n is
considered as active and running

1.4.7.5 Aborting a RX FIFO Queue

Aborting a RX FIFO Queue n does make sense if it is active (RX_FQ_STS0.BUSY[n] = 1) otherwise
nothing is done. This action can be taken at any time and will terminate with various delays depending
on the MH states, see the bullet list below. Aborting a RX FIFO Queue does not affect the other ones
currently running.
This kind of hard stop on a RX FIFO Queue would be mainly used for:

e Restarting properly a RX FIFO Queue when an error or issue has been detected while running

e To stop completely the MH, see Stopping MH Procedure chapter

In order to abort a RX FIFO Queue n running (RX_ FQ_STS0.BUSY[n] = 1 and RX_FQ_STS0.STOP[n] = 0)
or on hold (RX_FQ_STS0.BUSY[n] = 1 and RX_FQ_STS0.STOP[n] = 1), do the following:

e Write 1 to the RX FQ_CTRL1.ABORTI[n] (n € {0, 1, ..., 7}) bit register (the
RX_FQ_CTRL2.ENABLE[n] bit register must be still set to 1)

e Wait for the RX_FQ_STS0.BUSY[n] and RX_FQ_STS0.STOPI[n] (n € {0, 1, ..., 7}) bit status
register to be set to 0. All status bit registers related to the RX FIFO Queue n are cleared,
RX_FQ_STS1.ERROR[n] and RX_FQ_STS1.UNVALID[n] are set to 0. Once done the RX FIFO
Queue n is considered as no more active

e Write 0 to the RX_FQ_CTRL1.ABORTI[n] (n € {0, 1, ..., 7}) bit register

e Set the RX FQ_CTRL2.ENABLE[n] (n € {0, 1, ..., 7}) bit register back to 0 to protect the RX
FIFO Queue n from being restarted

As soon as the RX FIFO Queue is inactive, it is then possible to configure and change the setting of the
RX FIFO Queue n, no write protection is active.

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 244 | 306

When aborting a RX FIFO Queue n, five cases need to be considered:

e The RX FIFO Queue n is active and running (RX FQ_STS0.BUSY[n] = 1 and
RX_FQ_STS0.STOP[n] = 0) and a new RX message is coming. The RX FIFO Queue number to
receive the RX message data is not known when the abort is executed. If the RX message after
filtering is rejected, the MH will wait for the reception of the timestamp before setting the
RX_FQ_STS0.BUSY[n] bit register to 0. In case the RX filtering is too long, and has not finished
before receiving the timestamp, the RX_FQ_STS0.BUSY[n] bit register is set to 0, only at the
end of the RX filtering process.

e The RX FIFO Queue n is active and running (RX_FQ_STS0.BUSY[n] = 1 and
RX_FQ_STSO0.STOP[n] = 0) and a new RX message is coming. The RX FIFO Queue number to
receive the RX message data is not known when the abort is executed. If the RX message after
filtering is accepted, the MH will wait for the last data to be written in S_MEM and the writing
of the acknowledge, before setting the RX_FQ_STS0.BUSY[n] bit register is set to 0. Even if the
RX message accepted does not target the RX FIFO Queue to abort, the same principle applies.

e The RX FIFO Queue n is active and running (RX_ FQ_STS0.BUSY[n] = 1 and
RX_FQ_STSO0.STOP[n] = 0) and no RX message data is received from the PRT (transmission in
progress for instance). As there is no RX message received, the RX FIFO Queue n is aborted
immediately and the RX_FQ_STS0.BUSY[n] bit register is set to 0.

e The RX FIFO Queue n is active and not running (RX_FQ_STS0.BUSY[n] = 1 and
RX_FQ_STSO0.STOP[n] = 1) when the abort is executed. The RX FIFO Queue n is aborted
immediately and the RX_FQ_STS0.BUSY[n] and RX_FQ_STS0.STOP[n] bit registers are set to 0.

e The RX FIFO Queue n is inactive (RX_FQ_STS0.BUSY[n] = 0 and RX_FQ_STS0.STOP[n] = 0)
when the abort is executed. Nothing is done.

As the MH will complete its current tasks before stopping the RX FIFO Queue, the RX ABORT IRQ
interrupt will never be set.

1.4.7.6 TX FIFO Queue Initial Start

For the TX FIFO Queues, some common configuration registers need to be set prior any start. It is
essential to note that those registers are write-protected when the MH is started (MH_CFG.START =
1):
e The TX_DESC_MEM_ADD.FQ_BASE_ADDRI[15:0] bit field register defines the base address to
store the TX descriptors for the TX FIFO Queues in the L MEM
e The MH_CFG.MAX_RETRANS[7:0] bit field to define the number of possible re-transmissions for
the same message
e The MH_CFG.INST_NUM[2:0] bit field to indicate the X_CAN instance number
e The MH_SFTY_CFG and MH_SFTY_CTRL registers according to the safety measures to apply
e The AXI_ADD_EXT register if the DMA AX/ address bus interface is greater than 32bit
e The AXI_PARAMS register to define read and write outstanding
e The TX_FILTER_CTRLO/TX_FILTER_CTRL1 control registers and TX_FILTER_REFVAL{n} (n € {0, 1,
2, 3}) configuration registers, if the TX filter is enabled. All the registers assigned to this

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 245 | 306

feature must be configured before starting any TX FIFO Queues, see TX Filter chapter for more
details

Before starting a TX FIFO Queue n several configuration registers need to be defined:
e The TX_FQ_START_ADD{n} register defines the address of the First TX Descriptor of the linked
list
e The TX_FQ_SIZE{n}.MAX_DESC register provides the size of the linked list in number of TX
descriptors
e The TX_FQ_CTRL2.ENABLE[n] bit register to enable the TX FIFO Queue n before a start

In order to define a TX FIFO Queue n, do the following:

¢ A TX FIFO Queue can only start if the MH_CTRL.START bit register is set to 1 (refer to the Initial
MH Start Procedure section)

e The SW must check the TX_FQ_STS0.BUSY[n] and TX_FQ_CTRL2.ENABLE[n] (n € {0, 1, ..., 7})
bit registers are set to 0 (TX FIFO Queue n not already active and enabled). With such bit
configuration the TX_FQ_STS0.STOP[n] bit register must be equal to 0

e Configure the start address of the TX descriptor linked list for the TX FIFO Queue n using the
TX_FQ_START_ADD{n} (n € {0, 1, ..., 7}) register

e Define the maximum number of TX descriptors in the linked list, for the TX FIFO Queue n,
using the TX_FQ_SIZE{n}.MAX_DESC[9:0] (n € {0, 1, ..., 7}) register. The memory size allocated
is expected to be TX_FQ_SIZE{n}.MAX_DESC[9:0] * 32byte (TX descriptor size)

e In case no TX message is expected to be sent right away: The First TX Descriptor must be
declared with a VALID bit set to 0. Doing so, the TX FIFO Queue will be put on hold right away
after being started, waiting for a valid TX descriptor to send a TX message.

e In case some TX messages are expected to be sent right away: Define the relevant number of
TX descriptors in the linked list with their respective data container. Only valid TX descriptors
(VALID bit set to 1 in descriptor) can trig the transmission of TX messages. It is mandatory to
declare an invalid TX descriptor (VALID bit set to 0) after the latest one being valid. This is
required to put the RX FIFO Queue on hold when no more messages need to be sent.

e Unmask the interrupt 7X FQ /RQ[n] (n € {0, 1, ..., 7}) on the interrupt controller

e Enable the TX FIFO Queue n writing 1 the TX_FQ_CTRL2.ENABLE[n] (n € {0, 1, ..., 7}) bit
register

e Start the TX FIFO Queue n writing 1 to the TX_FQ_CTRLO.START[n] bit register. The PRT must
be started prior this action

e Wait for the TX_FQ_STS0.BUSY[n] (n € {0, 1, ..., 7}) bit status register to be set to 1. Once
done, the TX FIFO Queue n is considered as active

e The TX FIFO Queue n will be running (TX_FQ_STS0.STOP[n] = 0) up to the point an invalid TX
descriptor is fetched from the S_MEM and then goes on hold (TX_FQ_STS0.STOP[n] = 1). The
TX FQ_IRQ[n]interrupt is triggered to the system to notify such state. In case the TX FIFO
Queue is started with no TX messages, this interrupt is expected to happen in a very short time
(roughly the time to fetch the TX descriptor from the S_MEM)

As soon as the TX_FQ_STS0.BUSY[n] = 1, the TX_FQ_START_ADD{n} and TX_FQ_SIZE{n} configuration
registers are write-protected for the TX FIFO Queue n.

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 246 | 306

1.4.7.7 Restarting a TX FIFO Queue

When the MH has transmitted a TX message and there is no valid TX descriptor (VALID bit set to 0),
the TX FIFO Queue n is put on hold (TX_FQ_STS0.BUSY[n] = 1 and TX_FQ_STS0.STOP[n] = 1). The
TX FQ_IRQ[n] interrupt is triggered to notify the system of such state. This is normal behavior, and
such scenario can occur if the SW does not provide new TX messages in time before the MH gets to
the last valid descriptor

In order to restart a TX FIFO Queue n, do the following:
e A TXFIFO Queue can only start if the MH_CTRL.START bit register is set to 1 and
MH_STS.ENABLE =1
e The SW must ensure TX_FQ_STS0.BUSY[n], TX_FQ_STS0.STOP[n] and
TX FQ_CTRL2.ENABLE[Nn] (n € {0, 1, ..., 7}) bit status registers are all set to 1. In this
configuration, the TX_FQ_START_ADD{n}, TX_FQ_SIZE{n} and TX_FQ_RD_ADD_PT{n} (n € {0, 1,
..., 7}) configuration registers are write- protected
e If anew TX message needs to be sent, declare the TX descriptor in the linked list at the
address defined in the TX_FQ_ADD_PT{n} register
e Start the TX FIFO Queue n writing 1 to the TX_FQ_CTRLO.START[n] bit register. Once started
the TX_FQ_STS0.STOP[n] bit register goes to 0
Once done, the TX FIFO Queue n is considered as active, meaning the TX_FQ_STS0.BUSY[n] bit
register is set to 1 and running if the TX_FQ_STSO0.STOP[n] bit register is set to 0.

1.4.7.8 Aborting a TX FIFO Queue

Aborting a TX FIFO Queue n does make sense if it is active (TX_FQ_STS0.BUSY[n] = 1) otherwise
nothing is done. This action can be taken at any time and will terminate with various delays depending
on the MH states, see the bullet list below. Aborting a TX FIFO Queue does not affect the other ones
currently running.
This kind of hard stop on a TX FIFO Queue would be mainly used for:

e Restarting properly a TX FIFO Queue when an error or issue has been detected while running

e To stop completely the MH, see Stopping MH Procedure chapter

In order to stop a TX FIFO Queue n running, do the following:
e Write 1 to the TX_FQ_CTRL1.ABORT[n] (n € {0, 1, ..., 7}) bit register
e Wait for the TX_FQ_STS0.BUSY[n] and TX_FQ_STS0.STOP[n] (n € {0, 1, ..., 7}) bit status
register to be set to 0
e Write 0 to the TX FQ_CTRL1.ABORT[n] (n € {0, 1, ..., 7}) bit register
e Set the TX_FQ_CTRL2.ENABLE[Nn] (n € {0, 1, ..., 7}) bit register back to O to protect the TX FIFO
Queue n from being restarted

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 247 | 306

Once done the TX FIFO Queue n is considered as no more active, meaning the TX_FQ_STS0.BUSY[n]
and TX_FQ_STSO0.STOP[n] bit registers are both set to 0. It is then possible to configure and change
the setting of the TX FIFO Queue n, no write protection is active. All status bit registers related to the
TX FIFO Queue n are cleared, TX_FQ_STS1.ERROR[n] and TX_FQ_STS1.UNVALID[n] are set to 0.

When aborting a TX FIFO Queue n, five scenarios can occur:

e The TX FIFO Queue n is active and running (TX_FQ_STS0.BUSY[n] = 1 and
TX_FQ_STSO0.STOP[n] = 0) and one of its TX messages is selected as the highest priority
message. As the message is not yet sent, nothing is preventing the MH to abort the TX FIFO
Queue n. The TX_FQ_STS0.BUSY[n] bit register is set immediately to 0. The TX FIFO Queue n
becomes inactive after a few cycles.

e The TX FIFO Queue n is active and running (TX_FQ_STS0.BUSY[n] = 1 and
TX_FQ_STSO0.STOP[n] = 0) and one of its TX messages is being transmitted to the PRT. The MH
finishes the current TX message before aborting the TX FIFO Queue n. The TX FIFO Queue n
becomes inactive when the current TX message of that TX FIFO Queue n is acknowledged.
Some delays may occur before having the TX_FQ_STS0.BUSY[n] set to O.

e The TX FIFO Queue n is active and running (TX_FQ_STS0.BUSY[n] = 1 and
TX_FQ_STS0.STOP[n] = 0) and another TX FIFO Queue is sending a TX message to the PRT. As
nothing is preventing the MH to abort the TX FIFO Queue n, the TX_FQ_STS0.BUSY[n] bit
register is set immediately to 0. The TX FIFO Queue n becomes inactive after a few cycles.

e The TX FIFO Queue n is active and not running (TX_FQ_STS0.BUSY[n] = 1 and
TX_FQ_STSO0.STOP[n] = 1) when the abort is executed. As nothing is preventing the MH to
abort the TX FIFO Queue n, the TX_FQ_STS0.BUSY[n] and TX_FQ_STS0.STOP[n] bit registers
are set immediately to 0. The TX FIFO Queue n becomes inactive after a few cycles.

e The TX FIFO Queue n is inactive (TX_FQ_STS0.BUSY[n] = 0 and TX_FQ_STS0.STOP[n] = 0)
when the abort is executed. Nothing is done.

As the MH will complete its current tasks before stopping the TX FIFO Queue, the 7TX ABORT IRQ
interrupt will never be set.

1.4.7.9 TX Priority Queue Initialization

A TX Priority Queue is defined by up to 32 slots where a TX Header descriptor is defined per slot.
For the TX FIFO Priority Queue, some common configuration registers need to be set for all slots prior
a start. It is essential to note that those registers are write-protected when the MH is started
(MH_CFG.START = 1) :

e The MH_CFG.MAX_RETRANS[7:0] bit field to define the number of possible re-transmissions for

the same message

e The MH_CFG.INST_NUM[2:0] bit field to indicate the X_CAN instance number

e The MH_SFTY_CFG and MH_SFTY_CTRL registers according to the safety measures to apply

e The AXI_ADD_EXT register if the DMA AX/ address bus interface is greater than 32bit

e The AXI_PARAMS register to define read and write outstanding

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

X_CAN 248 | 306

e The TX_DESC_MEM_ADD.PQ_BASE_ADDR[15:0] bit field register defines the base address to
store the TX descriptors for the TX Priority Queue in the L_MEM

e The TX_FILTER_CTRLO/TX_FILTER_CTRL1 control registers and TX_FILTER_REFVAL{n} (n € {0, 1,
2, 3}) configuration registers, if the TX filter is enabled. All the registers assigned to this
feature must be configured before starting any TX FIFO Queues, see TX Filter chapter for more
details

In order to define a TX Priority Queue, do the following:
e Check that TX_PQ_STS0.BUSY[n] is equal to O for n € {0, 1, ..., 31}, no TX Priority Queue slots
must be active
e Define the TX Priority Queue start address in the TX_PQ_START_ADD register
e Define the size of the TX Priority Queue based on the number of expected slots to be active at
the same time. Considering n slots, the expected memory size to be allocated for the TX
Priority Queue is equal to n * 32byte (TX descriptor size)
As soon as one of the slots is started, the TX_PQ_START_ADD register is write-protected. Refer to the
Starting a TX Priority Queue Slot section for more details.

1.4.7.10 Starting a TX Priority Queue Slot

Ensure the TX Priority Queue is initialized, refer to the TX Priority Queue Initialization section.
In order to start a TX Priority Queue slot n, do the following:
e A TX Priority Queue slot n can only start if the MH_CTRL.START bit register is set to 1 and
MH_STS.ENABLE = 1 (refer to the Initial MH Start Procedure section)
e Definein S_ MEM the TX descriptor for the TX Priority Queue slot n, at the address
TX_PQ_START_ADD[31:0] + n * 32byte
e Unmask the interrupt 7X_ PQ /RQ on the interrupt controller
e Enable the TX Priority Queue slot n in writing 1 to the TX_ PQ_CTRL2.ENABLE[n] (n € {0, 1, ...,
31}) bit register
e Start the TX Priority Queue slot n in writing 1 to the TX_ PQ_CTRLO.START[n] (n € {0, 1, ..., 31})
bit register. The PRT must be started prior this action.
e Wait for the TX PQ_STS0.BUSY[n] (n € {0, 1, ..., 31}) bit status register to be set to 1. As soon
as one TX Priority Queue slot is busy, the TX_PQ_START_ADD register is write protected.
Once the previous steps are completed, the TX Priority Queue slot n is considered as active, meaning
the TX_PQ_STS0.BUSY[n] (n € {0, 1, ..., 31}) is set to 1.
As soon as the TX message defined in TX Priority Queue slot n is sent, the TX_PQ_STS0.BUSY[n] is set
to 0 automatically. It is recommended to set the TX_PQ_CTRL2.ENABLE[n] bit register back to 0, once
the transmission is completed, to avoid any start of non-initialized slots.
It is essential to note that when the MH stops, all the TX Priority Queue slots are set automatically
inactive, meaning TX_PQ_STS0.BUSY[31:0] bit register are all set to 0.

Version 3.9 Bosch Automotive Electronics
28 February 2024
ME-IC/PAY

X_CAN 249 | 306

1.4.7.11 Aborting a TX Priority Queue slot

In order to stop a TX Priority Queue slot n running, do the following:

e Write 1 to the TX_ PQ_CTRL1.ABORT[n] (n € {0, 1, ..., 31}) bit register

e Wait for the TX_PQ_STS0.BUSY[n] (n € {0, 1, ..., 31}) bit status register to be set to 0

e Write 0 to the TX PQ_CTRL1.ABORT[n] (n € {0, 1, ..., 31}) bit register

e Set the TX_PQ_CTRL2.ENABLE[n] (n € {0, 1, ..., 31}) back to 0 to protect the TX Priority Queue

slot n from being restarted

Once done the TX Priority Queue slot n is set inactive, meaning the TX_PQ_STS0.BUSY[n] bit register
is set to 0. It is possible to configure and change the global setting of the TX Priority Queue, only if
there are no TX Priority Queue slot actives, meaning TX_PQ_STS0.BUSY[31:0] equal 0. All status bit
registers related to the RX FIFO Queue n are cleared, TX_PQ_STS1.SENT[n] (n € {0, 1, ..., 31}) is set to
0.

When aborting a TX Priority Queue slot n, four scenarios can occur:

e The TX Priority Queue slot n is active (TX_PQ_STS0.BUSY[n] = 1) and its TX message is
selected as the highest priority message. As the message is not yet sent, nothing is preventing
the MH to abort the TX Priority Queue slot n. The TX_PQ_STS0.BUSY[n] bit register is set
immediately to 0. The TX Priority Queue slot n becomes inactive after a few cycles.

e The TX Priority Queue slot n is active (TX_PQ_STS0.BUSY[n] = 1) and its TX message is being
transmitted to the PRT. The MH finishes the TX message in progress. The TX Priority Queue
slot n becomes inactive when the TX descr