

Robert Bosch GmbH
Automotive Electronics

X_CAN
Modular CAN IP-module

Transmission and
Reception Handling with

FIFO Queue

Application Note X_CAN_AN001

Document Revision 1.0
08.01.2025

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

ii 08.01.2025

LEGAL NOTICE

© Copyright 2024 by Robert Bosch GmbH and its licensors. All rights reserved.

“Bosch” is a registered trademark of Robert Bosch GmbH.

The content of this document is subject to continuous developments and
improvements. All particulars and its use contained in this document are given by
BOSCH in good faith.

NO WARRANTIES: TO THE MAXIMUM EXTENT PERMITTED BY LAW, NEITHER
THE INTELLECTUAL PROPERTY OWNERS, COPYRIGHT HOLDERS AND
CONTRIBUTORS, NOR ANY PERSON, EITHER EXPRESSLY OR IMPLICITLY,
WARRANTS ANY ASPECT OF THIS SPECIFICATION, SOFTWARE RELATED
THERETO, CODE AND/OR PROGRAM RELATED THERETO, INCLUDING ANY
OUTPUT OR RESULTS OF THIS SPECIFICATION, SOFTWARE RELATED
THERETO, CODE AND/OR PROGRAM RELATED THERETO UNLESS AGREED TO
IN WRITING. THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE
AND/OR PROGRAM RELATED THERETO IS BEING PROVIDED "AS IS", WITHOUT
ANY WARRANTY OF ANY TYPE OR NATURE, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND ANY
WARRANTY THAT THIS SPECIFICATION, SOFTWARE RELATED THERETO,
CODE AND/OR PROGRAM RELATED THERETO IS FREE FROM DEFECTS.

ASSUMPTION OF RISK: THE RISK OF ANY AND ALL LOSS, DAMAGE, OR
UNSATISFACTORY PERFORMANCE OF THIS SPECIFICATION (RESPECTIVELY
THE PRODUCTS MAKING USE OF IT IN PART OR AS A WHOLE), SOFTWARE
RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO RESTS
WITH YOU AS THE USER. TO THE MAXIMUM EXTENT PERMITTED BY LAW,
NEITHER THE INTELLECTUAL PROPERTY OWNERS, COPYRIGHT HOLDERS
AND CONTRIBUTORS, NOR ANY PERSON EITHER EXPRESSLY OR IMPLICITLY,
MAKES ANY REPRESENTATION OR WARRANTY REGARDING THE
APPROPRIATENESS OF THE USE, OUTPUT, OR RESULTS OF THE USE OF THIS
SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM
RELATED THERETO IN TERMS OF ITS CORRECTNESS, ACCURACY,
RELIABILITY, BEING CURRENT OR OTHERWISE. NOR DO THEY HAVE ANY
OBLIGATION TO CORRECT ERRORS, MAKE CHANGES, SUPPORT THIS
SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM
RELATED THERETO, DISTRIBUTE UPDATES, OR PROVIDE NOTIFICATION OF
ANY ERROR OR DEFECT, KNOWN OR UNKNOWN. IF YOU RELY UPON THIS
SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM
RELATED THERETO, YOU DO SO AT YOUR OWN RISK, AND YOU ASSUME THE
RESPONSIBILITY FOR THE RESULTS. SHOULD THIS SPECIFICATION,
SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED
THERETO PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL LOSSES,
INCLUDING, BUT NOT LIMITED TO, ANY NECESSARY SERVICING, REPAIR OR
CORRECTION OF ANY PROPERTY INVOLVED TO THE MAXIMUM EXTEND
PERMITTED BY LAW.

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

iii 08.01.2025

DISCLAIMER: IN NO EVENT, UNLESS REQUIRED BY LAW OR AGREED TO IN
WRITING, SHALL THE INTELLECTUAL PROPERTY OWNERS, COPYRIGHT
HOLDERS OR ANY PERSON BE LIABLE FOR ANY LOSS, EXPENSE OR DAMAGE,
OF ANY TYPE OR NATURE ARISING OUT OF THE USE OF, OR INABILITY TO USE
THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR
PROGRAM RELATED THERETO, INCLUDING, BUT NOT LIMITED TO, CLAIMS,
SUITS OR CAUSES OF ACTION INVOLVING ALLEGED INFRINGEMENT OF
COPYRIGHTS, PATENTS, TRADEMARKS, TRADE SECRETS, OR UNFAIR
COMPETITION.

INDEMNIFICATION: TO THE MAXIMUM EXTEND PERMITTED BY LAW YOU
AGREE TO INDEMNIFY AND HOLD HARMLESS THE INTELLECTUAL PROPERTY
OWNERS, COPYRIGHT HOLDERS AND CONTRIBUTORS, AND EMPLOYEES,
AND ANY PERSON FROM AND AGAINST ALL CLAIMS, LIABILITIES, LOSSES,
CAUSES OF ACTION, DAMAGES, JUDGMENTS, AND EXPENSES, INCLUDING
THE REASONABLE COST OF ATTORNEYS’ FEES AND COURT COSTS, FOR
INJURIES OR DAMAGES TO THE PERSON OR PROPERTY OF THIRD PARTIES,
INCLUDING, WITHOUT LIMITATIONS, CONSEQUENTIAL, DIRECT AND INDIRECT
DAMAGES AND ANY ECONOMIC LOSSES, THAT ARISE OUT OF OR IN
CONNECTION WITH YOUR USE, MODIFICATION, OR DISTRIBUTION OF THIS
SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM
RELATED THERETO, ITS OUTPUT, OR ANY ACCOMPANYING
DOCUMENTATION.

GOVERNING LAW: THE RELATIONSHIP BETWEEN YOU AND ROBERT BOSCH
GMBH SHALL BE GOVERNED SOLELY BY THE LAWS OF THE FEDERAL
REPUBLIC OF GERMANY. THE STIPULATIONS OF INTERNATIONAL
CONVENTIONS REGARDING THE INTERNATIONAL SALE OF GOODS SHALL
NOT BE APPLICABLE. THE EXCLUSIVE LEGAL VENUE SHALL BE
DUESSELDORF, GERMANY.

MANDATORY LAW SHALL BE UNAFFECTED BY THE FOREGOING
PARAGRAPHS.

INTELLECTUAL PROPERTY OWNERS/COPYRIGHT OWNERS/CONTRIBUTORS:
ROBERT BOSCH GMBH, ROBERT BOSCH PLATZ 1, 70839 GERLINGEN,
GERMANY AND ITS LICENSORS.

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

iv 08.01.2025

Revision History

Version Date Remark

1.0 11.12.2024 First version for X_CAN version 1.0.0 – 1.1.0

Conventions

The following conventions are used within this document:

Register names TX_FQ_START_ADDn, TX_FQ_CTRL0

Names of files and directories directoryname/filename

Source code/function names xcand_mh_tx_fifo_enqueue_msg()

References

This document refers to the following documents:

Ref Author Title

[1] ME-IC/PAY XCAN user manual version 3.90

Terms and Abbreviations

This document uses the following terms and abbreviations:

Term Meaning

AXI Advanced eXtensible Interface
C Software example functions programmed in “C”
CAN Controller Area Network
CAN CC CAN classic
CAN FD CAN flexible data rate
CAN XL CAN extended data Length
DESC Descriptor
FQ FIFO Queue
HOST This is the CPU which is hosting the X_CAN
HW Hardware
IRC Interrupt Request Controller
L_MEM Local Memory
MH Message Handler
NA Not applicable
PRT Protocol Controller
RX Receive
S_MEM System Memory
SW Software
TX Transmit

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

v 08.01.2025

Table of Contents

1 TARGET OF THIS APPLICATION NOTE .. 1

2 MH MESSAGE HANDLER .. 2

2.1 MH INTRODUCTION ... 2
2.2 MH - AXI INTERFACES OVERVIEW .. 3
2.3 MH CONFIGURATION ... 4

3 L_MEM , S_MEM AND TX FIFO QUEUE DESCRIPTOR MEMORY ORGANISATION...................................... 6

3.1 L_MEM (LOCAL MEMORY) .. 6
3.2 S_MEM (SYSTEM MEMORY) .. 7
3.3 TX FIFO DESCRIPTOR MEMORY ORGANIZATION ... 7

4 TX FIFO QUEUE .. 9

4.1 TX DESCRIPTOR (TX FIFO QUEUE) ... 10
4.2 TX DATA CONTAINER ... 11
4.3 TX MESSAGE HEADER .. 12
4.4 PREPARE AND TRANSMIT MESSAGE WITH TX FIFO QUEUE ... 16
4.5 ABORT TX FIFO QUEUE ... 16
4.6 RESTART TX FIFO QUEUE ... 17
4.7 SUMMARY OF REGISTERS FOR TX-FIFO QUEUE ... 18
4.8 EXAMPLE SOFTWARE WITH FUNCTIONS FOR TX FIFO QUEUE ... 18

5 RX FIFO QUEUE ... 20

5.1 RX DESCRIPTOR (SINGLE DESCRIPTOR, NORMAL MODE) .. 20
5.2 SINGLE RX DESCRIPTOR AND DATA CONTAINER ... 22
5.3 RX MESSAGE HEADER .. 23
5.4 READ RECEIVED MESSAGE .. 26
5.5 ABORT RX FIFO QUEUE ... 26
5.6 SUMMARY OF REGISTERS ... 27
5.7 EXAMPLE SOFTWARE WITH FUNCTIONS FOR RX-FIFO QUEUE ... 28

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

1/28 08.01.2025

1 Target of this Application note

This application note describes transmit message handling and receive message
handling using FIFO queue and Data Container in the X_CAN versions 1.0.0 to 1.1.0

The topics included are:

• Introduction of MH, L_MEM, S_MEM, TX Descriptor and RX Descriptor.

• General preparation of MH before using the FIFO Queue

• Preparation and transmission of TX message using TX FIFO Queue

• Preparation and reading out the RX message using RX FIFO Queue

Important Note:

Software examples delivered with this application note are only for illustration
purposes. Use the examples on own risk.

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

2/28 08.01.2025

2 MH Message Handler

2.1 MH Introduction

The MH is located in between the main interconnect and the PRT.

All functions concerning the storage and scheduling of CAN messages are
implemented in the MH. The TX path supports the storage of CAN messages in up to
8 TX FIFO Queues and 1 TX Priority Queue. The RX path provides 8 RX FIFO
Queues.

FIFO data is physically stored in S_MEM and managed by the Descriptors.

TX and RX Filters provide methods to accept or deny CAN Messages and (for RX
only), to determine the target RX FIFO for data storage.

The MH is configured and controlled by HOST CPU via HOST_AXI interface. CAN
messages and Descriptors are transported between S_MEM and L_MEM
autonomously by an internal DMA, which is connected to DMA_AXI. For fast access,
the MH needs a L_MEM which is connected via MEM_AXI interface.

Depending on the chosen SoC integration, multiple X_CAN IPs can share the same
L_MEM.

See more details of MH in [1].

Figure: Block diagram MH

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

3/28 08.01.2025

2.2 MH - AXI interfaces Overview

The MH is configured and controlled by the HOST via the HOST_AXI interface, which
is an AXI4-Lite slave interface.

The MH uses the DMA_AXI interface to interchange the CAN messages and
descriptors with the S_MEM and/or L_MEM via its embedded DMA, which is an AXI4
master interface.

The MH-AXI interfaces comply to AMBA 4 ARM Ltd protocol (see ARM IHI 0022E
(ID022613)).

See more information about AXI interfaces and AXI parameters in [1].

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

4/28 08.01.2025

2.3 MH Configuration

Please note that, before using the X_CAN MH to transmit and receive message, some
general configuration of the MH have to be configured and started.

See the following registers

Register (short name) Description

MH_CFG Message Handler Configuration register

AXI_PARAMS AXI parameter register

RX_FILTER_MEM_ADD RX Filter Base Address register

TX_DESC_MEM_ADD TX Descriptor Base Address register

MH_CTRL Message Handler Control register

More details of registers, please see in [1].

An example of these configurations can be found in the following functions in the
provided example software.

Name:

File:

Description:

xcand_mh_init(..)

../xcand/xcand_mh/xcand_mh.c

Include the initialization of following MH functions:
- TX FIFO Queue
- TX PRIO Queue
- RX FIFO Queue
- RX Filter Config

This function initializes all related features of MH and allocate the
memory which is used by X_CAN, by calling other sub-functions such
as
xcand_mh_set_global_config()

xcand_mh_set_tx_fifo_config()

xcand_mh_set_rx_fifo_config()

Name:

File:

Description:

xcand_mh_set_global_config(..)

../xcand/xcand_mh/xcand_mh.c

This function configures the following items:
- global configuration of MH such as Message Retransmision option

and RX FIFO Queue mode (Normal/Continuous)
- AXI parameters
- the base address of L_MEM

Name:

File:

Description:

xcand_mh_start(..)

../xcand/xcand_mh/xcand_mh.c

This function starts the MH, which has to be done before the FIFO
Queues and FIFO Priority Queues can be started.

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

5/28 08.01.2025

Name:

File:

Description:

xcand_mh_stop(..)

../xcand/xcand_mh/xcand_mh.c

This function stops the MH with a step-wise process by clearing the
START bit.

Name:

File:

Description

xcand_config_and_start(..)

../xcand/xcand.c

This function configures the X_CAN (PRT, MH, IRC), and start the
X_CAN (MH, PRT)

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

6/28 08.01.2025

3 L_MEM , S_MEM and TX FIFO Queue Descriptor Memory

Organisation

3.1 L_MEM (Local Memory)

The MH needs a L_MEM which is connected via MEM_AXI interface.
Up to 64Kbytes can be used as L_MEM. The L_MEM size depends only on:

- the number of TX FIFO Queue
- the number of TX Priority Queue slot
- the number of RX filter element and reference/mask pair

The L_MEM is needed for:

- performing the TX-SCAN and the RX filtering
- storing the current Header Descriptor and the next Header Descriptor for active

TX FIFO Queues
- storing the Header Descriptor for active TX Priority Queues
- storing all RX filter elements and reference/mask pairs

See following figure as overview about X_CAN architecture.

Figure: X_CAN architecture (top view)

XCAND_TOP

(X_CAN)

TX_MSG

RX_MSGDMA_AXI

L_MEM
(Local Memory)

HOST_AXI

AXI Decoder

XCAN_PRT
(Protocol Controller)

XCAND_MH
(Message Handler)

HOST_AXI HOST_AXI

CAN INTERFACE

P
e
ri
p
h
e
ra

l
In

te
rc

o
n
ne

c
t

XCAND_TOP_IRC
(Interrupt Controller)

INTERRUPTS

M
a
in

 I
n
te

rc
o
n
n
ec

t

MEM_IF

S_MEM
(System Memory)

ENABLE

MEM_AXI

HOST_AXI

TIME BASE

OTP

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

7/28 08.01.2025

3.2 S_MEM (System Memory)

S_MEM is the System Memory and it is used to:
- Define linked-list of TX Descriptors for every TX FIFO Queue
- Define TX Descriptor for every TX Priority Queue slot
- Define linked-list of RX Descriptors for every RX FIFO Queue
- Store RX messages (header and payload data) at the defined RX FIFO Queue

address
- Declare TX message data payload attached to TX Descriptor (where the

header and other information are defined.)

3.3 TX FIFO Descriptor memory organization

The TX FIFO Queue Descriptors are organized into the L_MEM starting at the base
address defined in TX_DESC_MEM_ADD.FQ_BASE_ADDR[15:0] bit in
TX_DESC_MEM_ADD register. One memory location of size 8*32bit is required to
hold the TX Header Descriptor of every TX FIFO Queues.

The TX Descriptor elements are organized in 32bit word, and therefore any offset
would be a multiple of 4.

Memory Base Address Offset Name Bit Field Description

FQ_BASE_ADDR[15:0] 0x0+0x40*n

TX FIFO Queue n

(current/next TX Header

Descriptor)

(0<= n <N)

Element 0 TX Header Descriptor, see

TX descriptor, TX Message

and TX FIFO Queue

chapters

0x4+0x40*n Element 1

0x8+0x40*n Element 2: TS0

0xC+0x40*n Element 3: TS1

0x10+0x40*n Element 4: T0

0x14+0x40*n Element 5: T1

0x18+0x40*n Element 6: T2/TD0

0x1C+0x40*n
Element 7:

TX_AP/TD1

0x20+0x40*n

TX FIFO Queue n

(next/current TX Header

Descriptor)

(0<= n <N)

Element 0 TX Header Descriptor, see

TX descriptor, TX Message

and TX FIFO Queue

chapters

0x24+0x40*n Element 1

0x28+0x40*n Element 2: TS0

0x2C+0x40*n Element 3: TS1

0x30+0x40*n Element 4: T0

0x34+0x40*n Element 5: T1

0x38+0x40*n Element 6: T2/TD0

0x3C+0x40*n
Element 7:

TX_AP/TD1

Table: Memory organization of the TX descriptors considering N TX FIFO Queue

Every TX FIFO Queue, when active, has its current and next Descriptor defined in the
L_MEM for the TX-SCAN process. This means, for a given TX FIFO Queue, memory
space must be double the size. The current and the next TX Header Descriptor are
used for the TX-SCAN.

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

8/28 08.01.2025

If [n] TX FIFO Queues are defined, the required L_MEM memory is [n] x 2 x TX
Descriptor size (32bytes).

Example for TX-FIFO, L_MEM memory usage:
If 8 x TX FIFO Queues are used, then 512 bytes are required in the L_MEM.

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

9/28 08.01.2025

4 TX FIFO Queue

The X_CAN supports a maximum of 8 TX FIFO queues. The needed amount of 0..N-
1 TX-FIFO Queues can be defined by Software. A TX FIFO Queue is a list of TX
messages to be sent in order to the PRT.

Every TX FIFO has its current TX Descriptor locally stored in the L_MEM.
Furthermore, the next TX Descriptor will be uploaded if the current TX Descriptor is
selected with the TX Scan for the CAN Bus arbitration.

TX messages are sent according to the priority of the message, namely message ID.
This priority are evaluate during the TX Scan against candidates from other active TX
FIFO Queues. This means, every TX FIFO Queue will progress differently according
to the priority of their TX messages.

The lower number of TX FIFO Queue is the higher the priority. The TX FIFO Queue
number 0 has the highest priority. The TX FIFO Queue number 7 has the lowest
priority. This means, if there are messages with the same message ID from different
TX FIFO Queues during the TX Scan, the message from the lower number of TX FIFO
will be sent first.

The TX message payload data is always stored in the S_MEM. The TX FIFO start
address, and size are defined in the MH registers.

When the TX FIFO Queue is busy (either running or on hold), its configuration registers
are write-protected.

TX Data Container must be aligned on the burst of 8x32bit whenever possible.

In order to transmit a message, the TX Descriptor and Data Container have to be
prepared.

Figure: TX-FIFO Queue memory organization in S_MEM

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

10/28 08.01.2025

4.1 TX Descriptor (TX FIFO Queue)

The MH uses TX Descriptors for TX-FIFO Queue. A TX message and a TX Descriptor
are defined as follows:

1 TX message = 1 TX Descriptor (+ 1 TX Buffer/TX Data Container).
1 TX Descriptor is made of 8 elements of 32bit word. (e.g. 8 x 32 bits)

The TX Descriptor contains the information for/from the MH such as control bits,
interrupt option, the status of the transmission of the TX message, TX message
Timestamp, TX message header and TX message payload or the address pointer to
the TX message payload.

TX Data Container is the memory space, which is allocated by the SW. This Data
Container is used to hold the TX message payload. In most cases, the size of this TX
Data Container should be identical to the TX buffer size defined in the TX Descriptor.
And these should be big enough for the maximum message payload which will be
transmitted.

The following table shows the TX-FIFO Queue Descriptor structure.

TX FIFO
QUEUE

DESCRIPTOR
31 30 29 28 27 26 25 [24:16] 15 14 13 12 11 10 9 [8:4] 3 2 1 0

DMA Info Ctrl
1

V
A

L
ID

H
D

 (
s
e
t

to
 1

)

(M
e

s
s
a
g

e
 H

e
a
d

e
r)

W
R

A
P

N
E

X
T

 (
s
e
t

to
 0

)

IR
Q

(I
n
te

rr
u
p
t)

P
Q

 (
s
e
t

to
 0

)

E
N

D

C
R

C
[8

:0
]

F
Q

N
[3

:0
]

(F
IF

O
 Q

u
e
u
e
 N

u
m

b
e
r)

N
o

t
U

s
e
d

 (
s
e
t

to
 0

)

N
o

t
U

s
e
d

 (
s
e
t

to
 0

)

R
C

4
[:

0
]

(R
o
lli

n
g
 C

o
u
n
te

r)

S
T

S
[3

:0
]

(T
X

 M
e

s
s
a
g
e
 S

ta
tu

s
)

DMA Info Ctrl
2

N
o

t
U

s
e
d

 (
s
e
t

to
 0

)

P
L
S

R
C

S
IZ

E
[9

:0
]

(T
X

 B
u
ff

e
r

s
iz

e
)

IN
[2

:0
]

(I
n
s
ta

n
c
e
 N

u
m

b
e
r)

N
o

t
U

s
e
d

 (
s
e
t

to
 0

)

N
H

D
O

[9
:0

]
(s

e
t

to
 1

)

N
o

t
U

s
e
d

 (
s
e
t

to
 0

)

TS0
TS0[31:0]

(TimeStamp[31:0])

TS1
TS1[31:0]

(TimeStamp[63:32])

T0
T0[31:0]

(TX Message Header Information)

T1
T1[31:0]

(TX Message Header Information)

T2 / TD0
T2[31:0] / TD0[31:0]

(TX Message Header Information / First TX Data Payload)

TX_AP / TD1
TX_AP[31:0] / TD1[31:0]

(TX Payload Data Address Pointer / Second TX Data Payload)

 Managed by SW and HW

Table: Deatiled list of TX-FIFO Queue Descriptor

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

11/28 08.01.2025

Element
No.

Element Name Element description

 0 DMA Info Ctrl1 Include the DMA TX Element Descriptor
information and the status report of the transaction 1 DMA Info Ctrl2

2 TS0 Timestamping 0: LSB of the 64bits timestamp,
the Timestamp[31:0]

3 TS1 Timestamping 1: MSB of the 64bits timestamp,
the Timestamp[63:32]

4 T0 TX Message Header 0

5 T1 TX Message Header 1

6 T2 (XL) TX Message Header 2

TD0 (CC, FD) TX Message Data 0: payload byte 0 – byte 3

7 TX_AP (XL, FD) Address Pointer to TX Data Container
(FD: when payload is longer than 4 bytes)

TD1 (CC) TX Message Data 1: payload byte 4 – byte 7

Table: List with Overview of the TX Descriptor elements

4.2 TX Data Container

The configuration of the Data Container of the TX Descriptor is different, depending on
the CAN Frame Format.

CAN Frame Format TX Data Container usage

Classical CAN (CC) TX Data Container is not necessary.
The payload of the frame are described in TD0 and TD1.
This means PLSRC bit (Payload Source) in Element No. 1
must be set to 0.

CAN FD TX Data Container is only necessary when the payload of
the frame a longer than 4 bytes.
This means, PLSRC bit in Element No. 1 is depends on
the payload length.

CAN XL TX Data Container is a must.
This means PLSRC bit in Element No. 1 must be set to 1.

Table: Data Container for used CAN frame format

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

12/28 08.01.2025

4.3 TX Message Header

The TX Descriptor contains also the description of TX Message Header. The structure
of the TX Message Header depends on the CAN Frame Format.

The following tables describe 3 different data structures of the TX Message Header.

For Classical CAN:

Tn Bits Name Description/Constraints

T0 [31] FDF FD Format: must be set to 0.

[30] XLF XL Format: must be set to 0.

[29] XTD Extended Identifier

[28:18] BaseID [28:18] Base ID

[17:0] ExtID [17:0] Extended ID

T1

[31] Reserved Not Applicable

[30] FIR Fault Injection Request

[29:27] Reserved Not Applicable

[26] RTR Remote Transmission Request

[25:20] Reserved Not Applicable

[19:16] DLC[3:0] Data Length Code

[15:0] Reserved Not Applicable

Table: Classical CAN TX Message Header definition

Note: Classical CAN frames (CBDF, CEDF, CBRF, CERF) require T0.FDF = 0 and
T0.XLF = 0. The header consists of T0 and T1.

For CAN FD:

Tn Bits Name Description/Constraints

T0 [31] FDF FD Format: must be set to 1.

[30] XLF XL Format: must be set to 0.

[29] XTD Extended Identifier

[28:18] BaseID [28:18] Base ID

[17:0] ExtID [17:0] Extended ID

T1

[31] Reserved Not Applicable

[30] FIR Fault Injection Request

[29:27] Reserved Not Applicable

[26] Must be set to 0 Not Applicable

[25] BRS Bit Rate Switch

[24:21] Reserved Not Applicable

[20] ESI Error State Indicator

[19:16] DLC[3:0] Data Length Code

[15:0] Reserved Not Applicable

Table: CAN FD TX Message Header definition

Note: CAN FD frames (FBDF, FEDF) require T0.FDF = 1 and T0.XLF = 0. The
header consists of T0 and T1.

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

13/28 08.01.2025

For CAN XL:

Tn Bits Name Description/Constraints

T0 [31] FDF FD Format: must be set to 1.

[30] XLF XL Format: must be set to 1.

[29] XTD Extended Identifier: must be set to 0.

[28:18] Priority ID[28:18] Priority identifier

[17] RRS Remote Request Substitution

[16] SEC Simple Extended Content

[15:8] VCID[7:0] Virtual CAN Network ID

[7:0] SDT[7:0] SDU Type

T1

[31] Reserved Not Applicable

[30] FIR Fault Injection Request

[29:27] Reserved Not Applicable

[26:16] DLC-XL[10:0] Data Length Code with CAN XL encoding

[15:0] Reserved Not Applicable

T2 [31:0] AF[31:0] Acceptance Field

Table: CAN XL TX Message Header definition

Note: CAN XL frames (XLFF) require T0.FDF = 1, T0.XLF = 1 and T0.XTD = 0. The
header consists of T0, T1 and T2.

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

14/28 08.01.2025

Following figures show the linking between the TX Descriptors and the TX Data
Containers for different CAN Frame Format.

CAN CC:

For Classic CAN there is no
additionally TX Data Container
necessary. The payload data is included
in the TX Descriptor. (Element 6 TD0
and Element 7 TD1)

CAN FD:

For CAN FD which contains the payload
≤ 4 bytes, the TX Data Container is not
required. The payload is included in the
TX Descriptor. (Element 6 TD0)

CAN XL:

For CAN XL no payload data can be
defined in TX Descriptor. The payload
data is always in the Data Container.

Figure: Links between TX Descriptor and TX Data Container

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

15/28 08.01.2025

Figure: Struture of TX-FIFO Queue in the S_MEM as used in the example SW

The above figure shows the structure of TX FIFO Queue on the S_MEM which is used
in the example software. The TX FIFO Queue has the size of 8 elements. One TX
Descriptor is = one TX message.

Note: The X_CAN supports a maximum number of 1024 Tx descriptors.

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

16/28 08.01.2025

4.4 Prepare and transmit message with TX FIFO queue

Before the TX FIFO Queue can be used to transmit a TX message, following registers
have to be configured.

TX_DESC_MEM_ADD TX Descriptor Base Address register (address on L_MEM)
TX_FQ_START_ADD [n] TX FIFO Queue [n] Start Address register (address on

S_MEM)
TX_FQ_SIZE [n] TX FIFO Queue n Size register
TX_FQ_CTRL2 TX FIFO Queue Control register 2

Now the TX FIFO Queue is configured by the SW (Host), following sequence need to
be applied to prepare and transmit a TX message.

1. Check if the VALID bit in the Element 0 of the TX Descriptor is already VALID
bit = 1 or not (VALID bit = 0). If it is not valid , this means the MH has not yet
proceeded this TX Descriptor. If the VALID bit = 0, then the SW- Application
may continue writing.

2. The SW needs to prepare/write all TX message information in the elements of
the the TX Descriptor.
Note: Please make sure, that the VALID bit in the element 0, shall be set to 1
at the end. This VALID bit = 1 tells the MH that the configuration of the TX
message is ready for the the MH.

3. Start the TX FIFO Queue (if not started or on hold), by writing the START bit =
1 of the TX FIFO Queue n in the TX_FQ_CTRL0 register.

4.5 Abort TX FIFO Queue

Aborting a TX FIFO Queue does makes sense if it is active (BUSY bit of TX FIFO
Queue n in TX_FQ_STS0 = 1) otherwise nothing is done. This action can be taken at
any time and will terminate with various delays depending on the MH states, Aborting
a TX FIFO Queue does not affect the other TX FIFO Queues currently running.

This kind of hard stop on a TX FIFO Queue would be mainly used for:

- Restart a TX FIFO Queue when an error or issue has been detected while
running properly.

- Stop the MH completely.

Aborting TX FIFO Queue can be done by doing the following

1. Write the unlock key sequence (0x1234 and 0x04321, see [1], chapter
MH_LOCK) to MH_LOCK register. (Writing the ABORT bits in TX_FQ_CTRL1
register is protected.)

2. Abort the TX FIFO Queue by setting ABORT bit of the TX FIFO Queue n in the
TX_FQ_CTRL1 register.

3. Wait until the BUSY bit of the TX FIFO Queue n in the TX_FQ_STS0 register is
0.

4. Clear ABORT bit of the TX FIFO Queue n in the TX_FQ_CTRL1 register.

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

17/28 08.01.2025

5. Write ENABLE bit of the TX FIFO Queue n in the TX_FQ_CTRL2 register
back to 0 to protect the TX FIFO Queue n from being restarted.

See also [1] Chapter Aborting a TX FIFO Queue

4.6 Restart TX FIFO Queue

In case that the SW does not provide new TX messages in time, before the MH
gets to the last valid TX Descriptor. This could happen when the SW is too slow
compared to the HW (X_CAN-MH).

This means, the MH has transmitted a TX message, and there is no valid TX
Descriptor (VALID bit = 0), the TX FIFO Queue is then put on hold.
(TX_FQ_STS0.BUSY[n] =1 and TX_FQ_STS0.STOP[n] =1).

Therefore, the MH_TX_FQn_IRQ[n] bit in FUNC_RAW register is then set, and
the interrupt TX_FQ_IRQ[n] notifies the SW of such state. In this case, the
UNVALID[n] bit in TX_FQ_INT_STS register is set. This is normal behavior.

The SW can read the address of the TX Descriptor where the MH has stopped
in TX_FQ_ADD_PT[n] register, and then start the TX FIFO Queue again.

See also the description about restart sequnence in [1], chapter Restarting a TX
FIFO queue.

In the example software, this interrupt service can be found in function
xcand_process_irq_func(..) in file xcand.c

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

18/28 08.01.2025

4.7 Summary of registers for TX-FIFO Queue

This table lists X_CAN registers for the TX-FIFO Queue.

Register (short name) Description

TX_DESC_MEM_ADD TX Descriptor Base Address register
(address of L-MEM)

TX_DESC_ADD_PT TX Descriptor current address pointer register

TX_STATISTICS TX Message Counter

TX_FQ_STS0 TX FIFO Queue Status register 0

TX_FQ_STS1 TX FIFO Queue Status register 1

TX_FQ_CTRL0 TX FIFO Queue Control register 0

TX_FQ_CTRL1 TX FIFO Queue Control register 1

TX_FQ_CTRL2 TX FIFO Queue Control register 2

TX_FQ_ADD_PTn TX FIFO Queue n Current Address Pointer register

TX_FQ_START_ADD[n] TX FIFO Queue n Start Address register
(address on S_MEM, where the first Descriptor is.)

TX_FQ_SIZE[n] TX FIFO Queue n Size register

Table: X_CAN registers for the TX-FIFO Queue

More details of registers, please see in [1].

4.8 Example software with functions for TX FIFO Queue

List of C functions in example software which demonstrate the Transmission
Handling with TX FIFO Queue for the X_CAN.

Name:

File:

Description:

xcand_an01_tx_rx_fifo_queue(..)

../xcand/app_notes/xcand_an01_tx_rx_fifo_queue.c

Function illustrates how to use TX FIFO Queue and RX FIFO Queue
to transmit and receive messages.

Name:

File:

Description:

xcand_mh_set_tx_fifo_config(..)

../xcand/xcand_mh/xcand_mh.c

Function configures
- the starts address of the TX IFO Queue link list Descriptor (address

of first Descriptor) in the S_MEM
- the size of the TX FIFO Queue
- the ENABLE bit, to enable the TX FIFO Queue.

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

19/28 08.01.2025

Name:

File:

Description:

xcand_mh_tx_fifo_enqueue_msg(..)

../xcand/xcand_mh/xcand_mh.c

Function does the following sequence,

- checks if TX FIFO Queue is not full and has space for the message.
- prepare the contents of the TX Descriptor and Data Container.
- sets VALID bit in TX Descriptor.
- if TX FIFO Queue has not been started, sets START bit for the TX

FIFO Queue.
- updates putindex and rolling counter for the next message.

Name:

File:

Description:

xcand_mh_tx_fifo_start(..)

../xcand/xcand_mh/xcand_mh.c

Function starts a TX FIFO Queue, sets START bit for the TX FIFO
Queue.

Name:

File:

Description:

xcand_mh_tx_fifo_abort(..)

../xcand/xcand_mh/xcand_mh.c

Function aborts a TX FIFO Queue, and disables a TX FIFO Queue

Name:

File:

Description:

xcand_mh_tx_fifo_is_full(..)

../xcand/xcand_mh/xcand_mh.c

Function checks if TX FIFO Queue is full or not.

Name:

File:

Description:

xcand_mh_tx_fifo_is_empty(..)

../xcand/xcand_mh/xcand_mh.c

Function checks if TX FIFO Queue is empty or not.

Name:

File:

Description:

xcand_process_irq_func(..)

../xcand/xcand.c

Function checks and processes the individual Interrupt Flags

For TX FIFO Queue releated: when the UNVALID and SENT
interrupts have happened.

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

20/28 08.01.2025

5 RX FIFO QUEUE

The X_CAN supports a maximum of 8 RX FIFO Queues. The SW needs to configure
the required RX FIFO Queues[n], so that only the RX FIFO Queue number from 0 to
N-1 can be used. A RX FIFO Queue is a list of RX Descriptors pointing to an RX Data
Container to store the RX messages received by the PRT.

The mechanism to manage RX FIFO Queues is based on the concept of the linked list.
Each RX FIFO Queue uses a linked list of RX Descriptors and RX Data Containers.
Those containers are used for writing/storing the RX message Header and Data on
the S_MEM, and have the fixed size over the entire RX FIFO Queue.

In order to receive a message, the RX Descriptor and the Data Container have to be
prepared.

The example software of the application note demonstrates how to receive message
with RX FIFO Queue in normal mode (RX_CONT_DC bit in MH_CFG register = 0),
with single RX Descriptor.

5.1 RX Descriptor (single Descriptor, normal mode)

o 1 RX message => 1 RX Descriptor + 1 RX Buffer/RX Data Container (This is

as single Descriptor)
o 1 RX Descriptor is made of 4 elements of 32bit word. They provide following

information in the table below.

Note: The Rx FIFO Queue in Continuous Mode usage is described in [1], chapter RX
FIFO Queue in Continuous Mode

RX FIFO QUEUE
DESCRIPTOR
(Normal Mode)

31 30 29 28 27 26 25 [24:16] [15:12] [11:9] [8:4] [3:0]

DMA info Ctrl 1

V
A

L
ID

H
D

 (
M

e
s
s
a
g
e
 H

e
a
d
e
r)

N
o

t
U

s
e
d

 (
s
e
t

to
 0

)

N
E

X
T

IR
Q

N
o

t
U

s
e
d

 (
s
e
t

to
 0

)

C
R

C
[8

:0
]

F
Q

N
[3

:0
]

(R
X

 F
IF

O
 Q

u
e
u
e
 N

u
m

b
e
r)

IN
[2

:0
]

(I
n
s
ta

n
c
e
 N

u
m

b
e
r)

R
C

[4
:0

]

(R
o
lli

n
g
 C

o
u
n
te

r)

S
T

S
[3

:0
]

(T
X

 M
e

s
s
a
g
e
 S

ta
tu

s
)

RX_AP
RX_AP[31:0]

(RX Address Pointer)

TS0
TS0[31:0]

(TimeStamp[31:0])

TS1
TS1[31:0]

(TimeStamp[63:32])

 Managed by SW and HW

Table: Deatiled list of RX Descriptor (Normal mode)

MH_3060

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

21/28 08.01.2025

Element
No.

Element Name Element description

0 DMA Info Ctrl1 Information for linked-list execution, and the
status report of the transaction

1 RX_AP Address Pointer to RX Data Container

2 TS0 Timestamping 0: LSB of the 64bits timestamp

3 TS1 Timestamping 1: MSB of the 64bits timestamp

Table: List with Overview of the RX Descriptor elements

See also in [1], the chapter RX Descriptor, which explains more in detail the usage of
the RX Descriptor register bits.

The following lists shows the element in RX Descriptor which is managed by MH or
SW. Please use this information accordingly for your SW driver design.

Note: for Single Descriptor, there is only Header Descriptor, and there is no Trailing
Descriptor. Since 1 message = 1 Descriptor.

 SW to write information to MH SW to read information from MH

Element

Number
RX Descriptor

Header

Descriptor

Trailing Descriptor

0 Mandatory
Mandatory Mandatory in Normal mode

1
Mandatory in Normal mode

NA in Continuous mode (must be set to 0)

Mandatory Mandatory in Normal mode

2 NA (must be set to 0) Mandatory NA (must be equal to 0)

3 NA (must be set to 0) Mandatory NA (must be equal to 0)

Table: Elements managed by the SW

MH to write information to SW MH to read information from

SW

Element

Number
Header Descriptor

Trailing

Descriptor
RX Descriptor

0 Mandatory Not updated Mandatory

1
Not updated in Normal mode

Mandatory in Continuous mode

Not updated Mandatory in Normal mode

NA in Continuous mode

2 Mandatory Not updated NA

3 Mandatory Not updated NA

Table: Elements managed by MH

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

22/28 08.01.2025

5.2 Single RX Descriptor and Data Container

The needed size of the Data Container changes according to the CAN Frame Format
of the received message.

Following figures show the links between the RX Descriptors and the RX Data
Containers for different CAN Frame Format.

CAN CC:

RX Data Container

(N * 32byte)

R0
R1

RD0
RD1

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

 D
e
sc

ri
p
to

r

B
u
ff

e
r

For Classical CAN, header and payload
data can be directly written into a 32byte
Data Container (N = 1)

CAN FD:

RX Data Container

(N * 32byte)

R0

B
u
ff

e
r

R1
RD0
RD1

RDn-1

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

 D
e
s
c
ri
p

to
r

For CAN FD, a larger data buffer is
required to hold up to 64byte of payload
data and the header message data. In
this case, a Data Container of 96byte (N
= 3) is allocated to support CAN FD
frame format.

CAN XL:

RX Data Container

(N * 32byte)

B
u

ff
e

r

RD0
R2
R1
R0

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

 D
e
s
c
ri

p
to

r

RD1

RDn-1

For CAN XL a Data Container size of
more than 2048byte (N=65) is required.
However, quite some memory space is
lost in the Data Container (when
configure to support CAN XL payload
size) when receiving Classical CAN or
CAN FD messages. To solve this issue,
multiple RX Descriptors can be used,
see next chapter.

Figure: Overview of Links between the RX Descriptors and the RX Data Containers

See more info in [1], chapter RX Single Descriptor.

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

23/28 08.01.2025

5.3 RX Message Header

RX Data Container contains the RX Message Header (R0, R1 and R2) and RX
Message Data (RDn)of the received frame.

Following tables shows the structure of the RX Message Header for the dedicated CAN
protocol type.

For Classical CAN:

Rn Bits Name Source Description/Constraints

R0 [31] FDF CAN FD Format (=0)

[30] XLF CAN XL Format (=0)

[29] XTD CAN Extended Identifier

[28:18] BaseID [28:18] CAN Base ID

[17:0] ExtID [17:0] CAN Extended ID

R1

[31:27] na na reserved

[26] RTR CAN Remote Transmission Request

[25:20] na na reserved

[19:16] DLC[3:0] CAN Data Length Code

[15:11] na na reserved

[10] FAB MH
Filter Aborted: when set to 1, the RX filtering process was

ending before completing with no match

[9] BLK MH
Black List: When set to 1, the RX message filtered

belongs to a blacklist

[8] FM MH
Filter Match: When set to 1 one of the filter elements

(defined by FIDX[7:0]) has detected a match

[7:0] FIDX[7:0] MH
Filter index: provide the information of the filter index

which has been triggered

R2 [31:0] na na reserved

Table: Classical CAN RX Header definition

Note: Classical CAN frames (CBDF, CEDF, CBRF, CERF) can be identified by R0.FDF = 0 and

R0.XLF = 0.

For CAN FD:

Rn Bits Name Source Description/Constraints

R0 [31] FDF CAN FD Format (=1)

[30] XLF CAN XL Format (=0)

[29] XTD CAN Extended Identifier

[28:18] BaseID [28:18] CAN Base ID

[17:0] ExtID [17:0] CAN Extended ID

R1

[31:26] na na reserved

[25] BRS CAN Bit Rate Switch

[24:21] na na reserved

20 ESI CAN Error State Indicator

[19:16] DLC[3:0] CAN Data Length Code

[15:11] na na reserved

MH_562

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

24/28 08.01.2025

Rn Bits Name Source Description/Constraints

[10] FAB MH
Filter Aborted: when set to 1, the RX filtering process was

ending before completing with no match

[9] BLK MH
Black List: When set to 1, the RX message filtered

belongs to a blacklist

[8] FM MH
Filter Match: When set to 1 one of the filter elements

(defined by FIDX[7:0]) has detected a match

[7:0] FIDX[7:0] MH
Filter index: provide the information of the filter index

which has been triggered

R2 [31:0] na na reserved

Table: CAN FD RX Header definition

Note: CAN FD frames (FBDF, FEDF) can be identified by R0.FDF = 1 and R0.XLF = 0.

For CAN XL:

Rn Bits Name Source Description/Constraints

R0 [31] FDF CAN FD Format (=1)

[30] XLF CAN XL Format (=1)

[29] na na reserved

[28:18] Priority ID[28:18] CAN Priority identifier

[17] RRS CAN Remote Request Substitution

[16] SEC CAN Simple Extended Content

[15:8] VCID[7:0] CAN Virtual CAN Network ID

[7:0] SDT[7:0] CAN SDU Type

R1

[31:27] na na reserved

[26:16] DLC-XL[10:0] CAN Data Length Code with CAN XL encoding

[15:11] na na reserved

[10] FAB MH
Filter Aborted: when set to 1, the RX filtering process was

ending before completing with no match

[9] BLK MH
Black List: When set to 1, the RX message filtered

belongs to a blacklist

[8] FM MH
Filter Match: When set to 1 one of the filter elements

(defined by FIDX[7:0]) has detected a match

[7:0] FIDX[7:0] MH
Filter index: provide the information of the filter index

which has been triggered

R2 [31:0] AF[31:0] Acceptance Field

Table: CAN XL RX Header definition

Note: CAN XL frames (XLFF) could be identified by R0.FDF = 1 and R0.XLF = 1.

Note: FAB, BLK, FM and FIDX bits in R1 are the outputs of RX Filtering if the RX
Filter Element is used. If the RX Filter Element is not used, these bits have no usage.

MH_2907

MH_565

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

25/28 08.01.2025

Figure: Memory organization structure of the RX FIFO Queue in Normal Mode, Single
Descriptor

The above figure shows the structure of the RX FIFO Queue in Normal Mode on the
S_MEM which is used in the example software. The RX FIFO Queue has the size of 8
elements and 1 Descriptor is for 1 RX Message.

The linked list contains the Descriptors, where a Descriptor is defined by several data
elements of the same size, the element is 32bit word. A Descriptor is built by the SW,
but it will be read and executed by the MH. Every Descriptor is of the same size,
pointing to a Data Container into the S_MEM.

Note: The X_CAN supports a maximum number of 1024 RX Descriptor.

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

26/28 08.01.2025

5.4 Read received message

Please note, it is assumed that the RX Filters have already been configured. In the
example software, the RX Filters are configured as all message is accepted and stored
in the RX FIFO Queue[n].

Before RX FIFO Queue can be used to receive a message, following registers have to
be configured.

RX_FQ_START_ADD[n] RX FIFO Queue n Start Address register (address on

S_MEM, where the first Descriptor is.)
RX_FQ_SIZE[n] RX FIFO Queue n Size register
RX_FQ_CTRL2 RX FIFO Queue Control register 2

Note: The size of Data Container for the received message is defined in
RX_FQ_SIZE[n] and this must big enough for RX Message Header + RX Message
Data.

Now the RX FIFO Queue is configured, following sequence can be applied to receive
and read out a message.

1. The SW check the VALID bit in the RX Descriptor Element 0, if it is 1. This
means the MH has written the message to that RX Descriptor and the Data
Container described in that RX Descriptor.

2. Read the information from the RX Descriptor and Data Container.
3. Write bit VALID bit to 0, to notify the MH that the RX Descriptor has been read

and proceeded.
4. Start the RX FIFO Queue (if not started or on hold), by writing the START bit

to 1 of the corresponding RX FIFO Queue number in the RX_FQ_CTRL0
register.

5.5 Abort RX FIFO Queue

Aborting a RX FIFO Queue makes sense if it is active (BUSY bit in RX_FQ_STS0 bit
of RX FIFO Queue n = 1) otherwise nothing is done. This action can be taken at any
time, and will terminate with various delays depending on the MH states. Aborting a
RX FIFO Queue does not affect the other ones currently running.

This kind of hard stop on a RX FIFO Queue would be mainly used for:

- Restarting properly a RX FIFO Queue when an error or issue has been detected
while running

- Stop completely the MH

Aborting RX FIFO Queue can be done by doing the following

1. Write the unlock key sequence to MH_LOCK register. (Writing ABORT bits in
RX_FQ_CTRL1 register is protected.)

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

27/28 08.01.2025

2. Abort RX FIFO Queue by setting ABORT bit of the RX FIFO Queue n in the
RX_FQ_CTRL1 register.

3. Wait until the BUSY bit of the RX FIFO Queue n in the RX_FQ_STS0 is 0.
4. Set ABORT bit of the RX FIFO Queue n in the RX_FQ_CTRL1 register back to

0.
5. Set the RX_FQ_CTRL2.ENABLE[n] bit register back to 0 to protect the RX

FIFO Queue n from being restarted

See also [1] chapter Aborting a RX FIFO Queue

5.6 Summary of registers

This table lists X_CAN registers for the RX-FIFO Queue.

Register (short name) Description

MH_CFG Message Handler Configuration register

RX_DESC_ADD_PT RX Descriptor current address pointer register

RX_STATISTICS RX Message Counter

RX_FQ_STS0 RX FIFO Queue Status register 0

RX_FQ_STS1 RX FIFO Queue Status register 1

RX_FQ_STS2 RX FIFO Queue Status register 2
(only for continuous mode)

RX_FQ_CTRL0 RX FIFO Queue Control register 0

RX_FQ_CTRL1 RX FIFO Queue Control register 1

RX_FQ_CTRL2 RX FIFO Queue Control register 2

RX_FQ_ADD_PTn RX FIFO Queue n Current Address Pointer register

RX_FQ_START_ADDn RX FIFO Queue n Start Address register
(address on S_MEM)

RX_FQ_SIZEn RX FIFO Queue n Size register

RX_FQ_DC_START_ADDn RX FIFO Queue n Data Container Start Address
(only for continuous mode)

RX_FQ_RD_ADD_PTn RX FIFO Queue n Read Address Pointer
(only for continuous mode)

Table: X_CAN registers for RX-FIFO Queue

More details of registers, please see in [1].

X_CAN_AN001 X_CAN_an001_tx_rx_handling_with FIFO_Queue Application Note

28/28 08.01.2025

5.7 Example software with functions for RX-FIFO queue

 List of C example functions which demonstrate Reception Handling with RX FIFO
Queue for the X_CAN.

Name:

File:

Description:

xcand_an01_tx_rx_fifo_queue(..)

../xcand/app_notes/xcand_an01_tx_rx_fifo_queue.c

- Function illustrates how to use TX FIFO Queue and RX FIFO
Queue to transmit and receive messages.

Name:

File:

Description:

xcand_mh_set_rx_fifo_config(..)

../xcand/xcand_mh/xcand_mh.c

Function configures
- the starts address of the RX FIFO Queue link list Descriptor

(address of first Descriptor) in the S_MEM
- The size of the RX FIFO Queue
- The ENABLE bit, to enable the RX FIFO Queue.

Name:

File:

Description:

xcand_mh_rx_fifo_dequeue_msg(..)

../xcand/xcand_mh/xcand_mh.c

Function does the following sequence,

- checks if RX FIFO Queue is empty or not.
- reads out a message/contents from RX Descriptor and Data

Container to message variable (struct).
- clears VALID bit in RX FIFO Queue Descriptor.
- if RX FIFO Queue has not been started, sets START bit for the RX

FIFO Queue.
- updates get index and rolling counter for the next message.

Name:

File:

Description:

xcand_mh_rx_fifo_start(..)

../xcand/xcand_mh/xcand_mh.c

Function starts a RX FIFO Queue [n], sets START bit for the RX
FIFO Queue[n].

Name:

File:

Description:

xcand_mh_rx_fifo_abort(..)

../xcand/xcand_mh/xcand_mh.c

Function aborts a RX FIFO Queue, and disables a RX FIFO Queue.

Name:

File:

Description:

xcand_mh_rx_fifo_is_empty(..)

../xcand/xcand_mh/xcand_mh.c

Function checks if RX FIFO Queue is empty or not.

	1 Target of this Application note
	2 MH Message Handler
	2.1 MH Introduction
	2.2 MH - AXI interfaces Overview
	2.3 MH Configuration

	3 L_MEM , S_MEM and TX FIFO Queue Descriptor Memory Organisation
	3.1 L_MEM (Local Memory)
	3.2 S_MEM (System Memory)
	3.3 TX FIFO Descriptor memory organization

	4 TX FIFO Queue
	4.1 TX Descriptor (TX FIFO Queue)
	4.2 TX Data Container
	4.3 TX Message Header
	4.4 Prepare and transmit message with TX FIFO queue
	4.5 Abort TX FIFO Queue
	4.6 Restart TX FIFO Queue
	4.7 Summary of registers for TX-FIFO Queue
	4.8 Example software with functions for TX FIFO Queue

	5 RX FIFO QUEUE
	5.1 RX Descriptor (single Descriptor, normal mode)
	5.2 Single RX Descriptor and Data Container
	5.3 RX Message Header
	5.4 Read received message
	5.5 Abort RX FIFO Queue
	5.6 Summary of registers
	5.7 Example software with functions for RX-FIFO queue

